2-D Stock Cutting Problem

Quantities Defined

Configuration:-
A configuration Cis a pattern (layout) where m (0 < m < n) rectangles have been already packed inside the
container without overlap, and n - m rectangles remain to be packed into the container.

A configuration is said to be successful if m = n, i.e., all the rectangles have been placed inside the
container without overlapping. A configuration is said to be failure if m < n and none of the rectangles outside the
container can be packed into the container without overlapping. A configuration is said to be final if it is either a
successful configuration or a failure configuration.

Candidate corner-occupying action (CCOA):-

Given a configuration with m rectangles packed, there may be many empty corners formed by the
previously packed rectangles and the four sides of the container. Let rectangle i be the current rectangle to be
packed, a candidate corner-occupying action (CCOA) is the placement of rectangle i at an empty corner in the
container so that rectangle i touches the two items forming the corner and does not overlap other previously
packed rectangles (an item may be a rectangle or one of the four sides of the container). Note that the two items
are not necessarily touching each other.

R

3

Example of Candidate corner-occupying action (CCOA) for rectangle R4

Obviously, the rectangle to be packed has two possible orientation choices at each empty corner, that is,
the rectangle can be placed with its longer side laid horizontally or vertically. A CCOA can be represented by a
quadri-tuple (i, x, y, h), where (x, y) is the coordinate of the bottom-left corner of the suggested location of
rectangle i and h is the corresponding orientation.

Minimal distance between rectangles:-
Let i and j be two rectangles already placed in the container, and (xi, yi), (xj, yj) are the coordinates of an
arbitrary point on rectangle i and j, respectively. The minimal distance dij between iandj is:

d; = min{\’f;{x; Ji_;-)z - .‘"_;')2}

In Figure, R3 is packed on the position occupying the corner formed by the upper side and the right side
of the container. As shown in Figure, the minimal distance between R3 and R1, and the minimal distance between
R3 and R2 are illustrated, respectively.

Illustration of distance

Degree of CCOA:-

Let M be the set of rectangles already placed in the container. Rectangle i is the current rectangle to be
packed, (i, x, y, h) is one of the CCOAs for rectangle i. If corner-occupying action (i, x, y, h) places rectangle i at a
corner formed by two items (rectangle or side of the container) u and v, the degree k of the corner-occupying
action (i, x, y, h) is defined as:

w; + [;

/. P— l (!rnin F)

where w; and /; are the width and the length of rectangle i, and dmin is the minimal distance from rectangle i to
other rectangles in M and sides of the container (excluding u and v), that is,

dmin — min {d!,?'} c MU {J:-'I.J'.-'g.h'_g.h'4}.f # U, l?'}

where s3, S,, s3 and s4 are the four sides of the container.

Algorithm:-

\
eStock- Length and Breadth
eRectangles- Length, Breadth and Numbers

J
eGenerate initial CCOA

J

eRepeat till no CCOA available
eCalculate Degree of CCOA available
eSelecting Correct CCOA and inserting it into Configuration
eCheck for CCOA for next iteration by:-
etraversing over the area of Stock
eChecking for Minimum Distance with other entities in the Configuration
*Checking for Overlapping with other entities in the Configuration

J

*Plotting the Final Configuration Matrix

Implementation:-

File Edit View Debug Parallel Deskiop| ik
REIRE Y LG -0
* Shortcuts (2] Howto Add (2] What's New -
s Goaiiaal 2-D Stock Cutting Problem
Lo« Gui v 2 » (@) New to MATLAB
B = — Input Parameters
Name =
B configration.ds
) curveintersect.m No_Rect = Stock Length
] min_dist_betwee... ;
] Project fig 19 Stock Width
—Rectangles to be placed
No_Rect =
20 Length Bredth Total Number
5 K 10
No_Rect = 1 2 | T 4
21 2
No_Rect =
22
Project.m (MATLABF Vv
No_Rect = - =
M-file for Project fig \:l | Calculate Orientation | Save Configration as XLS
3 _ |3 23
P’D{E“(‘ma’g'"J No of Rectangles placed:24
Project_Openi... No of Rectangles remaining:10
Project_Output... I Area Wasted:4
€@ editl_Callback(... =
editl_CreateFc...
€] cditw Callback... L
S By:- Shashank Sharma 2008111
BB gy GR35 :

Program:-

% 2-D STOCK CUTTING PROBLEM
% x-axis=-4

% y-axis=-3

%]]to x-axis=-2

% ||to y-axis=-1

clc
clear all
close all

% Input for stock and rectangles
stock 1=6;

stock_w=8;
Rect=xlsread("rectangles®,-1);
[Type,y]=size(Rect);

axis_n4._x=[0
stock_1];
axis_n4._.y=[0
01;
axis_n3.x=[0
01;
axis_n3.y=[0
stock_w];
axis_n2.x=[0
stock_1];
axis_n2.y=[stock_w
stock_w];
axis_nl.x=[stock_lI
stock_1];
axis_nl.y=[0
stock_w];

Cc=[1:
CCOA=[1];

% Generate initial CCOA
for i=1:Type
if Rect(i,l)<stock I && Rect(i,2)<stock w
CCOA=[CCOA
i00O0 -3 -4];
end
if Rect(i,l)<stock w && Rect(i,2)<stock_I
CCOA=[CCOA
i001-3-4];
end
end

[a,b]=size(CCOA);
rect_i=[];
rect_j=[1;
d_min=1000;
No_Rect=0;
Degree=[1;

on=0;

overlap=[]:
noverlap=0;

t1=0;t2=0;

% Loop executes till CCOA are available

while a ~= 0
% loop for all CCOA to calculate degree from 1 to last CCOA
for i=1l:a

%extracting rect coordinates according to orientation
ifT CCOA(i,4)==0
rect_i.x=[CCOA(1,2)
CCOA(i1,2)
CCOA(i,2)+Rect(CCOA(i,1),1)
CCOA(i,2)+Rect(CCOA(i,1),1)];

rect_i.y=[CCOA(i,3)
CCOA(i1,3)+Rect(CCOA(i1,1),2)
CCOA(i,3)+Rect(CCOA(i,1),2)
CCOA(1,3)];
else
rect_i.x=[CCOA(i,2)
CCOA(i,2)
CCOA(i1,2)+Rect(CCOA(i1,1),2)
CCOA(i ,2)+Rect(CCOA(i,1),2)];
rect_i.y=[CCOA(i,3)
CCOA(i,3)+Rect(CCOA(i,1),1)
CCOA(i1,3)+Rect(CCOA(i1,1),1)
CCOA(1,3)];
end

%checking distances with edges and getting MIN DISTANCE
% x-axis=-4 y-axis=-3 | |to x-axis=-2 | Ito y-axis=-1
iT CCOA(i,5)~=-1 || CCOA(i,6)~=-1
d=min_dist_between_two_polygons(axis_nl,rect_i);
if d<d _min
d_min=d;
end
end
iT CCOA(i,5)~=-2 || CCOA(i,6)~=-2
d=min_dist_between_two_polygons(axis_n2,rect_i);
if d<d_min
d_min=d;
end
end
ifT CCOA(i,5)~=-3 || CCOA(i,6)~=-3
d=min_dist_between_two_polygons(axis_n3,rect_i);
if d<d_min
d_min=d;
end
end
ifT CCOA(i,5)~=-4 || CCOA(i,6)~=-4
d=min_dist_between_two_polygons(axis_n4,rect_i);
if d<d_min
d min=d;
end
end

%extracting rect coordinates of other rect in configration and
%getting MIN DISTANCE from other rectangles
for j=0:No_Rect-1
rect_j.x=[C(J+1,1)
C(+1,1)
c(g+1,3)
Cg+1,3)];
rect_j.y=[C(J+1,2)
C(j+1,4)
cg+1.,4)
C(+1,2)];
ifT CCOA(i,5)~=j+1 || CCOA(i,6)~=j+1
d=min_dist_between_two_polygons(rect_j,rect_1i);

if d<d_min
d_min=d;

end

end

end

%Calculation of DEGREE for EACH CCOA
Degree(i)=1-d_min/((Rect(CCOA(i,1),1)+Rect(CCOA(i,1),2))/2);
end

[val,ind] = max(Degree);
No_Rect=No_Rect+1
% Insertion of OPTIMUM CCOA into CONFIGURATION
if CCOA(iInd,4)==
c=[C
CCOA(ind,2) CCOA(ind,3) CCOA(ind,2)+Rect(CCOA(ind,1),1)
CCOA(ind,3)+Rect(CCOA(ind,1),2) CCOA(ind,1)];
else
c=[C
CCOA(ind,2) CCOA(ind,3) CCOA(ind,2)+Rect(CCOA(ind,1),2)
CCOA(ind,3)+Rect(CCOA(ind,1),1) CCOA(ind,1)];

end

% Decreasing the quantity of available rect of type inserted in CCOA
Rect(CCOA(ind,1),3)=Rect(CCOA(ind,1),3)-1;

CCOA=[1:

% Loop over the different types of rectangles
for i=1:Type
% Check if rectangle of specific type is available or not
if Rect(i,3) ~=0
% Traversing over the area to find possible CCOA
for j=0:1:stock_I-Rect(i,b1l)
for k=0:1:stock_w-Rect(i,2)
% AIl entities in the CONFIGRATION are checked if
% they touch the prospective CCOA or not
for 1=-4:1:No_Rect-1
rect_i.x=[j
J
J+Rect(i,1)
Jjt+Rect(i,1)];
rect_i.y=[k
k+Rect(i,2)
k+Rect(i,2)
k1
it I1<0
if 1==-4
rect_j.x=axis_n4.x;
rect_j.y=axis_n4.y;
elseif 1==-3
rect_j.x=axis_n3.x;
rect_j.y=axis_n3.y;
elseif 1==-2
rect_j.x=axis_n2.x;
rect_j.y=axis_n2.y;
elseif 1==-1
rect_j.x=axis_nl._x;
rect_j.y=axis_nl.y;
end
else
rect_j.x=[C(1+1,1)
c(1+1,1)
C(1+1,3)
C(1+1,3)];
rect_j.y=[C(1+1,2)
c(1+1,4)
C(1+1,4)
C(1+1,2)];
end
d=min_dist_between_two_polygons(rect_j,rect_i);

% check i1f prospective CCOA touches any entity and
% iIf it does it stores its type

if d==0
on=on+1;
if on==1
til=1;
else
t©V”=1;
end
end

end

% Excutes when a prospective CCOA which touch more than 2 entities is
found
it on>=2
% Loop checks if prospective CCOA overlaps with
% any entity in the CONFIGRATION or not
for 1=0:1:No_Rect-1
rect_j.x=[C(1+1,1)
C(1+1,1)
c(1+1,3)
C(1+1,3)];
rect_j.y=[C(1+1,2)
C(1+1,4)
c(i+1,4)
C(1+1,2)];

overlap=polybool ("intersection”,rect_j.x,rect_j.y,rect_i.x,rect_i.y);
[yyy.,zzz]=size(overlap);
if zzz ~=0
noverlap=noverlap+1;
end
end
% 1T no overlap CCOA is confirmed
if noverlap ==
CCOA=[CCOA
i j kotl t2];
end
end
on=0;
noverlap=0;
end
end

% repeat to check CCOA for perpendicular orientation
for j=0:1:stock_I-Rect(i,2)
for k=0:1:stock_w-Rect(i,1l)
for 1=-4:1:No_Rect-1
rect_i.x=[]

J

J+Rect(i,2)

jJj+tRect(i,2)];

rect_i.y=[k

k+Rect(i,1)

k+Rect(i,1)

K1;

if I<0

if 1==-
rect_j.x=axis_n4._x;
rect_j.y=axis_n4.y;

elseif 1==-3
rect_j.x=axis_n3.Xx;
rect_j.y=axis_n3.y;

elseif I==-
rect_j.x=axis_n2.x;
rect_j.y=axis_n2.y;

elseif I==-1
rect_j.x=axis_nl.x;
rect_j.y=axis_nl.y;

end
else
rect_j.x=[C(1+1,1)
c(l+1,1)
C(1+1,3)
C(1+1,3)]1;
rect_j.y=[C(1+1,2)
c(i+1,4)
c(l1+1,4)
C(1+1,2)];
end
d=min_dist_between_two_polygons(rect_j,rect_i);
if d==0
on=on+1;
if on==1
tl=1;
else
t2=1;
end
end
end
if on>=2

for 1=0:1:No_Rect-1

rect_j.x=[C(1+1,1)
c(l+1,1)
c(1+1,3)
C(1+1,3)1;

rect_j.y=[C(1+1,2)
c(1+1,4)
c(l1+1,4)
C(1+1,2)];

overlap=polybool ("intersection”,rect_j.x,rect_j.y,rect_i.x,rect_i.y);

[yyy,zzz]=size(overlap);
if zzz ~=0
noverlap=noverlap+1;
end
end
if noverlap ==
CCOA=[CCOA
i jk1ltlt2];
end
end
on=0;
noverlap=0;
end
end

end
end
[a,b]=size(CCOA);
end

% Plotting of CONFIGURATION
[a,b]=size(C);
for i=1:1:a
rect_j._x=[C(i,1)
C(i,1)
C(1,3)
C(i,3)
C(i,n];
rect_j.y=[C(i,2)
C(1,4)
C(i,4)
C(1,2)
C(i,2)];
switch C(i1,5)
case 1
patch(rect_j.x,rect_j.y,"b");
hold on;
case 2
patch(rect_j.x,rect_j.y,"g");
hold on;
case 3
patch(rect_j.x,rect_j.y,"r");
hold on;
case 4
patch(rect_j.x,rect_j.y,"c");
hold on;
case 5
patch(rect_j.x,rect_j.y,"m");
hold on;
case 6
patch(rect_j.x,rect_j.y,"y");
hold on;
otherwise
patch(rect_j.x,rect_j.y);
hold on;
end
end

