Shashank Sharma Phone no- +91-8085154358 E-Mail- <u>sshell2u@gmail.com</u>, <u>shashank09111@iiitdmj.in</u>

# 🛆 Altair

#### **ASHOK LEYLAND**



## **Student Details**



| Name                          |                                                                                                      |
|-------------------------------|------------------------------------------------------------------------------------------------------|
| Department /<br>Year of Study | Mechanical, Final Year                                                                               |
| College Address               | PDPM Indian Institute of Information Technology Design and Manufacturing, Dumna road, Jabalpur, M.P. |
| Email                         | sshell2u@gmail.com, shashank09111@iiitdmj.ac.in                                                      |
| Phone                         | +91 8085154358                                                                                       |
| HOD name + contact details    | Dr. Sunil Agrawal<br>Email- <u>sa@iiitdmj.ac.in</u><br>Phone- +91 761 2633955                        |
| Reference<br>Professor        | Dr. Prashant Kumar Jain (preferred)<br>Email- <u>pkjain@iiitdmj.ac.in</u><br>Phone- +91 761 2632664  |

## **Student Comments**



| Problems<br>Attempted |                                                                                                                                                                                                                                                     |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Part A                | Problem No 1 : Pressure Tank<br>Problem No 2 - Control Arm                                                                                                                                                                                          |
| Part B                | Problem No 1 - Clutch Pedal<br>Problem No 3 - Aircraft Wing Rib                                                                                                                                                                                     |
| Part C                | Not Attempted                                                                                                                                                                                                                                       |
| Comments              | The reason for my participation was to gather valuable experience in<br>the field of Optimization. This contest really helped he to enhance my<br>skills. I had a very pleasant and enjoyable experience. The training<br>program was very helpful. |



**Part A : Problem 1- Pressure Tank** 

## **Problem Overview and Assumptions**



- The problem was optimization of a pressure tank model for internal pressure conditions so as to minimize the maximum displacement on the walls of the tank.
- The model has been meshed with an element size of '5' with mixed element type (both tria and quad).
- A material has been defined whose 'E' and 'nu' has been specified according to problem statement.
- Properties for both 'Design' and 'Non-Design' region has been specified with thickness '2'.
- A Topographic design variable is specified in Design region. A 2-plane symmetry is specified. Optimum bead params are set.
- A static displacement response is set.
- An objective of minimizing the response is established.

## **Model and Result Pictures**



• Model setup-



#### • Baseline Analysis (MaxDisp=20.687)



• Optimization (MaxDisp=3.487)

| Contour Plot<br>Shape Change(Mag)<br>Analysis system<br>5.000E+00<br>4.444E+00 | Model info: C:\Users\Shashank\Desktop\Altair\PartA\Problem 1\New folder\PartA_Problem1_Tank_1_des.h3d<br>Result: C:\Users\Shashank\Desktop\Altair\PartA\Problem 1\New folder\PartA_Problem1_Tank_1_des.h3d<br>Design : Iteration 15<br>Frame 4 |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -3.889E+00                                                                     |                                                                                                                                                                                                                                                |
|                                                                                |                                                                                                                                                                                                                                                |
|                                                                                |                                                                                                                                                                                                                                                |
|                                                                                |                                                                                                                                                                                                                                                |
|                                                                                |                                                                                                                                                                                                                                                |
|                                                                                |                                                                                                                                                                                                                                                |
| ──U.UUUE+UU<br>■ No resuit                                                     |                                                                                                                                                                                                                                                |
| Max = 5.000E+00                                                                |                                                                                                                                                                                                                                                |
| Grids 15778<br>Min = 0.000E+00                                                 |                                                                                                                                                                                                                                                |
| Grids 15809                                                                    |                                                                                                                                                                                                                                                |
|                                                                                |                                                                                                                                                                                                                                                |
|                                                                                |                                                                                                                                                                                                                                                |
| Y X                                                                            |                                                                                                                                                                                                                                                |

• Optimization (MaxDisp=7.467)

| Contour Plot<br>Shape Change(Mag)<br>Analysis system<br>5.000E+00 | Model info: C:\Users\Shashank\Desktop\Altair\PartA\Problem 1\New folder\PartA_Problem1_Tank_1_des.h3d<br>Result: C;\ <mark>Users\Shas</mark> hank\Desktop\Altair\PartA\Problem 1\New folder\PartA_Problem1_Tank_1_des.h3d<br>Design : Iteration 14 |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                   |                                                                                                                                                                                                                                                    |
|                                                                   |                                                                                                                                                                                                                                                    |
|                                                                   |                                                                                                                                                                                                                                                    |
|                                                                   |                                                                                                                                                                                                                                                    |
|                                                                   |                                                                                                                                                                                                                                                    |
|                                                                   |                                                                                                                                                                                                                                                    |
|                                                                   |                                                                                                                                                                                                                                                    |
| 5.556E-01                                                         |                                                                                                                                                                                                                                                    |
|                                                                   |                                                                                                                                                                                                                                                    |
| Max = 5.000E+00                                                   |                                                                                                                                                                                                                                                    |
| Grids 15811                                                       |                                                                                                                                                                                                                                                    |
| Min = 0.000E+00<br>Orido 15779                                    |                                                                                                                                                                                                                                                    |
| Gilds 15/70                                                       |                                                                                                                                                                                                                                                    |
| Z<br>A<br>X                                                       |                                                                                                                                                                                                                                                    |

#### **Result Observations**



- Thus it can be observed that the first optimization result is better than the second.
- Plot of .hgdata file for first optimization







|                       | No of<br>Iterations | Solver Time Taken<br>(Attach Out Files) | Mass Savings<br>% | Final Stress /Displacement<br>% |
|-----------------------|---------------------|-----------------------------------------|-------------------|---------------------------------|
| Run 1<br>(Topography) | 15                  | 00:00:35                                | NA                | Max Displacement=3.487          |
| Run 2<br>(Topography) | 14                  | 00:00:34                                | NA                | Max Displacement=7.467          |



Part A : Problem 2- Control Arm

## **Problem Overview and Assumptions**



- The problem was optimization of a Automotive control arm model for given loading conditions so as to minimize the maximum displacement on the point of action of forces.
- The model geometry was cleaned and a faulty edge was corrected.
- The model was tetra meshed using Volume tetra method.
- Properties for both 'Design' and 'Non-Design' region has been specified.
- A Topology design variable is specified in Design region.
- Two response is set-
  - Mass- Response Type mass.
  - Disp- Response Type static displacement at force application node.
- A constraint of disp of upper bound='.005'. (Value estimated through baserun)
- An objective of minimizing the mass response is established.

## **Model and Result Pictures**



• Model setup



#### Baseline Analysis (Load steps -Pot-hole, Brake, Corner)





Topology Optimization (element density>.3)



### **Result Observations**



- It has been observed that the displacements observed due to pot-forces is the maximum. This is basically due to lack of stiffness in the z direction.
- Plot of .hgdata fill.







|                     | No of      | Solver Time Taken  | Mass Savings | Final Stress /Displacement                 |
|---------------------|------------|--------------------|--------------|--------------------------------------------|
|                     | Iterations | (Attach Out Files) | %            | %                                          |
| Run 1<br>(Topology) | 13         | 00:00:10           | 60%          | Volume fraction Constraint 0.3 % satisfied |



Part B: Problem No 1 - Clutch Pedal

## **Problem Overview and Assumptions**



- The problem was optimization of a Clutch pedal for given loading conditions so as to minimize the weight of the part.
- A Topology design variable is specified in Design region. Also the draw type is set to single with the obstacle set to non design region.
- Two response is set-
  - Mass- Response Type mass.
  - Disp- Response Type static displacement at force application node.
- A constraint of disp of upper bound='.8'.
- An objective of minimizing the mass response is established.

### **Model and Result Pictures**



#### • Baseline analysis

| Contour Plot<br>Displacement(Mag)<br>Analysis system<br>4.802E-01 | Model info: C:\Users\Shashank\Desktop\Altair\PartB\Problem 1\New folder\PartB_Problem1_Clutch_Pedal_s2.h3d<br>Result: C:\Users\Shashank\Desktop\Altair\PartB\Problem 1\New folder\PartB_Problem1_Clutch_Pedal_s2.h3d<br>Subcase 2 (static) - Static Analysis : Iteration 0 |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                   | Frame 4                                                                                                                                                                                                                                                                    |
|                                                                   |                                                                                                                                                                                                                                                                            |
|                                                                   |                                                                                                                                                                                                                                                                            |
|                                                                   |                                                                                                                                                                                                                                                                            |
|                                                                   |                                                                                                                                                                                                                                                                            |
|                                                                   |                                                                                                                                                                                                                                                                            |
|                                                                   |                                                                                                                                                                                                                                                                            |
|                                                                   |                                                                                                                                                                                                                                                                            |
| 0.000E+00                                                         |                                                                                                                                                                                                                                                                            |
| No result                                                         |                                                                                                                                                                                                                                                                            |
| Grids 137339                                                      |                                                                                                                                                                                                                                                                            |
| Min = 0.000E+00                                                   |                                                                                                                                                                                                                                                                            |
| Grids 136622                                                      |                                                                                                                                                                                                                                                                            |
| X Z                                                               |                                                                                                                                                                                                                                                                            |
| Y                                                                 |                                                                                                                                                                                                                                                                            |

#### Topology optimization



#### **Result Observations**



• It is observed that 90% of the mass is reduced in the design domain keeping in accordance with the constraints.







|                     | No of      | Solver Time Taken  | Mass Savings                | Final Stress /Displacement       |
|---------------------|------------|--------------------|-----------------------------|----------------------------------|
|                     | Iterations | (Attach Out Files) | %                           | %                                |
| Run 1<br>(Topology) | 44         | 00:01:17           | 90 % (of the design domain) | Max displacement of .8 satisfied |



Part B: Problem No 3 - Aircraft Wing Rib

## **Problem Overview and Assumptions**



- The problem was optimization of a Aircraft Wing Rib for given loading conditions so as to minimize the weight of the part with maximum stiffness.
- A Free size design variable is specified in Design region. Also the mindim has been set to '4'.
- Two response is set-
  - Volf Response Type volume fraction.
  - wcomp- Response Type weighted compliances.
- A constraint of minvf of upper bound='.5'.
- An objective of minimizing the wcomp response is established.

## **Model and Result Pictures**



• Baseline analysis



#### • Free Size optimization



#### • Static analysis after optimization



### **Result Observations**



• Thus the volume has been decreased by half, keeping the stiffness of the wing rib intact.







|                      | No of      | Solver Time Taken  | Mass Savings | Final Stress /Displacement       |
|----------------------|------------|--------------------|--------------|----------------------------------|
|                      | Iterations | (Attach Out Files) | %            | %                                |
| Run 1<br>(Free Size) | 5          | 00:00:10           | 50%          | Max displacement is .75 (aprox.) |



Part C : Problem unattempted:

(because of an accident suffered)





THANK YOU