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Chapter 1

Problem Statement

The Project Aims to implement the 5 pose Burmester problem for a Four bar linkage using
algorithm proposed by K. Brunnthaler, M. Pfurner, and M. Husty. in their research paper
”Synthesis of planar four-bar mechanisms”.Their algorithm does not ensure that all the poses
lie in the same branch i.e. branch defects may be present.



Chapter 2

Theory

2.1 Planar kinematic mapping

First, we map the Fixed link frame to moving coupler frame using kinematic mapping.
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2.2 Mechanism analysis

Then, we calculate the constraints curve equation for a circle and also generalise it for its
degenerate case i.e. a line.

Co(X24+ Y —-2C,XZ - 2C,YZ +(C23+C2—RY)Z% =0

(R? — C? — C% — Co(z? + 1%) + 201z + 2C,0) X3 +(R? — C? — C2 — Cy(z? + ) — 2Ciz — 2020) X}
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2.3 Mechanism Synthesis

We then satisfy the Poses in the Constraint equation to generate Dyad parameters. First we
transform poses such y=that one of the poses align with the origin. Thus we are left with
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only 4 poses. We then eliminate the R in constraints.
(Xo: X1:X0:X3)=(1:0:0:0)

R? - 012 — Cg’ - 00(372 + yz) +2C1z +2Cy =0
(=XoXaz + XoXpy + Xy Xox + X3 Xy — X3 ~ X2)Co — XoXaCs + XoX3C,
+Xo X120y — X220y + X1 XoC1 — XoXhyCy — X2yCh + X1 X3Cy =0
Case 1:- At least one point lie on a line i.e. Co=0
— X X5 Co+ X X301+ Xo X12Co— X ExCy 4+ X1 X, Cy — Xo X1yCr = X2yCo+ X1 X3C, = 0

[(—Cga: + Cly)Xh- — C1X3; + Cngi}ng + (Cz‘y + C’l:z:)Xfi 4 {(—Co Xg; — Cl.Xg;)XH =0
t=1,...,4.

We get the following conditions. E1 and E2 are applicable when slider is parallel to x axis
while E2 is applicable bor any orientation of slider
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+ XagXoeX13 X 3 X12X33X02 — Xaa Xos Xoa X23 X7y X12 X0z + X2aXoaXo3X13X]) Xo2 X22 = X34 XpaXeaX1a X T, X132 Xaa
— X34 X04 XT3 X0a X1a X 11 Xa1 + X3: XosX03 X123 X X11 X31 — X{3 X211 X023 X33 X31 K03 X13 ~ X7 X11X12 X03 X521 X13X22
+Xf4xnxuxsnxusxnxzs — X131 X0sXo1 Xoa X33 X21 Xy + X1sXos Xo1 Xy X33 Xaa X2y + x:4xc4xm~’f;sgxtsxssxaa
— XyaXasX01 X7y Xa1 Xos X2 + X1aXosXo1 X7 X03 X33 Xa1 — X214 X0s Xo1 X12X21 X g X2z — X1aX04X01 X13 Xa1 XaaX iy
- Xu-’fmx?;xonxnxzaxm - X14X0sX]; XoaX2a X0aXa3 — XyaXoa X Koz X2 X2 X13 + X1aXo0a X3y X032 X33 Xoa X2z
- X14X0aXT; X1 X22 X33 X13 + X14 X0 X7y X12X22 X03 X2a + X14 X046 X5 X12X32 X23 X35 + X124 Xpa X Ty X12 X33 X03 X35
+ X14X0a X1 X02X21 XT3 X2z + X146 Xpe X11 X02X01 X3z XT3 + X1aXea X 11 X X3 X33 Xa1 — X1aXpa X131 XF X33 Xy Xas
— X14X04X11 X X21 X23 X0z — X14 XosX11X 75 X1 Xo3 Xaa + X1aXos X1 X123 X291 X3 X2z - X14XgaX11X12 X232 X21 X 73
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+ X24X14X03X13X3, XgaXaz - Xzexu-’(osxmxngxuxn - Xzo:XnX?gXoaXuXqu: + X24X14X0s X153 X5 X111 Xm0
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+ x:ﬁxmxuxu'zxnxnaxas + X3, X1 X131 X02 X33 X33 X13 = x?,,xmxuxmxa;xmx;g + XTiXo1 X111 X12X92 X33 X153
~ X34 X01 X112 X132 X22 X3 X23 ~ i X01X11X12 X33 X23 X153 — X]4Xa1X11X12 X232 X3 Xaz ~ X34 X01X02X12X13 X31 X33
— X§ X1 Xo3 X12 X 13 X231 X238 ~ X3 Xo1 Xoa X12 X21 Xos Xas + X34 Xo1 Xo2 X123 Xs1 XoaXas — X34 Xo1 Xoa XoaXa1 X13X22
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Case 1:-Point lie on a circle i.e. Co=1
The equations can be simplified by substituing b1,b2,b3,b4. Then the 4 equations we get
have to be solved to get the dyads.
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Chapter 3

Algorithm

1. Initially five poses of a moving system E are given.

2. Apply a coordinate transformation to all given poses such that one of the poses coin-
cides with the fixed coordinate frame.

3. Now only four arbitrary poses of a moving system remain, given by their coordinates
(X0i : X1i: X2i: X3i) fori=1, ... 4 in the kinematic image space.

4. To determine if all poses lie in the same assembly mode.

5. Substitute the coordinates of the poses in the Equations E1, E2 and E3 to determine
if some of the four Burmester points we are searching for are at infinity.

(a) E1, E2 and E3 are satisfied: at least two Burmester points are at infinity and one
of them is the point at infinity of the Y-axis of the fixed frame.

(b) Only E1 and E2 are satisfied: only one Burmester point is a point at infinity.
This point is the point at infinity of the X-axes of the fixed frame.

(c) Only E3 is satisfied: only one Burmester point is a point at infinity. This point
is not the point at infinity of the X-axes of the fixed frame.

(d) None of the conditions E1, E2 and E3 is satisfied: none of the Burmester points
is at infinity.

6. Substitute the input data into the general case equation to obtain the finite solutions.



Chapter 4

Implementation

4.1 Implementation in Mathemetica

The code uses equations obtained from Mathematica by:

1. In case of Slider Crank and Slider parallel to X-axis of Fixed co-ordinate system:
Solving 2 equations of a system of 4 linear equations in x, y and back substituting the
solutions into the other two equations yields two compatibility conditions E1 and E2.

2. In case of Slider Crank and Slider not parallel to X-axis of Fixed co-ordinate system:
Solving 2 out of a system of 4 linear equations in three variables x, y and C2 linearly
for x and y and substituting the solutions into one of the remaining equations an
equation of degree 3 in C2 is obtained, which can be factored. Two solutions of this
equation are complex and do not correspond to real mechanisms. The other factor of
the equation can be solved linearly for C2. Substituting the solutions for x, y and C2
into the remaining fourth equation yields a compatibility condition E3.

3. In case of General 4 Bar: Applying linear coordinate transformation to circle constraint
equation yields a system of 4 equations which are used to derive a closed form solution.
The quadratic terms of the unknowns in the constraint equations are eliminated by
simple manipulations this yields 3 bilinear equations in the unknowns b1, b2, b3 , b4.
Repeating the same process we get rid of the bilinear terms and 2 equations linear in
the unknowns remain. Solving these equations for two of the unknowns, e.g. bl, b2,
gives these two as functions of b3 and b4. Taking one of the bilinear equations and one
out of the system dependent just on b3 and b4 and calculating the resultant yields an
equation of degree four in b4. This equation can be solved in closed form. It has 0, 2
or 4 real roots for b4. Substituting one of this values in the two equations used for the
resultant yields two quadratic equations in b3. By eliminating (b3) we get one linear
equation in b3. We can use the same procedure to obtain one value of b3 for each
real root of b4. As bl and b2 are linear functions of b3 and b4 they can be calculated
easily. With the inverse coordinate transformation we obtain all the unknowns.



4.2 Implementation in c++

The code has been implemented using 4MDS software created under the supervision of Prof
Purwar. We use the softwares GUI to interactively input and display the output. The
research papers algorithm has been implemented within a function which interacts with the
software.

1. We can input poses using GUI or text file. Text files were used as input to verify
the result presented in paper. If the text file is empty, the program automatically
takes points from GUI. As the points are inputted, our code sets motion class variables
accordingly. Also, the coupler point is set to the first position.

2. Once the number of poses inputted reaches 5, the program displays a dialog prompting
the user to run the Mathematica code which inputs poses and generates Dyads and
compatibility variables.

3. After running mathematica code, the dialog is closed and our code automatically cal-
culates if the dyad type is RR or PR. It then goes on to initialize Dyads lists and
planerdbarmechanism classes within 4MDS to display the dyads on the GUI as output.



Chapter 5

Results

The Examples implemented in the research paper are verified using our algorithm. Also
Poses have been taken tfrom user to generate dyads accordingly.

5.1 RR-RR Dyad

The following Dyads are generated by Mathematica code.

|-4.482224956?96982 5.999674806112333 2.0002428765454447 -34.639102419585555
16.135828166521947 1.0001657009914733 2.000023543729121 -29.946087279571522
-3.6975008592552355 9.160247457887428 7.382138244900643 18.091189365523032
13.877101174971017 1.167249598692889 4.24327478403945 17.8439121308261687

The following Plots show two of the mechanisms formed by the Dyads
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5.2 RR-PR Dyad Parallel to X axis

The following Dyads are generated by Mathematica code.

h8.999864?58246685 8.398922846225174 ©.6953172742166408

©.000029228247160340004 0.15831871725372704 -57.11667181435004

10.00002239568163 8.42560075612906 ©.850308625588771 0.0000932637449576057
4.0000856386787325 5.258013043622042 11.310355883136538 10.000038809957914

The following Plots show two of the mechanisms formed by the Dyads
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Fle Edit View Constants Mechansm Toobars Settngs  Help
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5.3 RR-PR Dyad not Parallel to X axis

The following Dyads are generated by Mathematica code.

|—1?39?.6626?983932 53.76053653632995
17438.114298231503 -17.294607747715805
9.998820252481892 9.743927333549518
2.9866447950917063 7.19388780768917

The following Plot show the mechanisms formed by the Dyads

Fle Edit View Constants Mechansm Toobars Settngs  Help
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5.4 Arbitrary poses input from 4MDS

The user can enter points in 4MDS and using Mathematica, the dyads will be displayed.
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Chapter 6

Conclusion

1. 5 Pose Burmister Problem for Dyad generation has been solved according to the algo-
rithms propesed by the research paper.

2. The results presented in the paper have been cross verified with the program imple-
mented.

3. Points inputted by user have been used to generate dyads using the 4MDS software.

6.1 Future Scope

1. Restore the compromised functionality of the program like Edit Coupler and Zoom
out/in.

2. Debug to prevent errors.

3. Scale it to all 5 poses.
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