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ABSTRACT
Fourier descriptor based path synthesis algorithms rely on

harmonic decomposition of four-bar loop closure equation to
split the design space into smaller subsets. The core of the
methodology depends on calculation and fitting of Fourier de-
scriptors. However, a uniform time parametrization is assumed
in existing literature. This paper aims to explore the use of non-
uniform time parametrization of input data and calculation of
an optimal parametrization. Additionally, design-centric con-
straints have been proposed to give user enhanced control over
coupler speed. As a result, this work improves the existing algo-
rithm tremendously.

Keywords: Planar four-bar linkage, Open and Closed
path generation, Non uniform Fourier descriptor, optimal
parametrization.

1 Introduction
Mechanism synthesis problem can mostly be classified into

path, motion and function synthesis problems. Each of these
problems has been too complex to be solved for a generalized n-
bar one-degree-of-freedom mechanism. Consequently, most of
the work done deals with synthesis problem for the simplest case
in the family of all one degree of freedom mechanisms, the four-
bar mechanism. Different types of possible joints (revolute or
prismatic) and coupler point motion (closed or open) introduces
further complexities into the system. Many analytic and approxi-
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mate approaches have been proposed in an attempt to solve these
problems. In this paper, the focus is on path synthesis problems
for four-bar mechanisms for open and closed paths. Linkages
involving only revolute joints are considered.

Analytical methods for synthesis include algebraic meth-
ods [1,2,3], complex number methods [4] or displacement matrix
methods [5]. However, they can handle only up to 9 path points
above which the system of equations becomes over-constrained.
Even the exact results up to 9 path points are extremely complex
and can rarely be calculated. To counter these drawbacks, path
synthesis problem can be solved using an approximation. These
methods can handle any number of path points. However, com-
promise on precision is made in favor of approximate solutions.

Most of the approximation techniques restructure the syn-
thesis problem into an optimization problem [6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16]. These techniques are characterized by a vari-
ety of domain space variables, objective function and optimiza-
tion algorithm. Domain space variables depend on the formula-
tion of problem. Objective function is the measure of how good
a prospective mechanism is in fulfilling the target path require-
ments using domain space variables. Optimization algorithm can
be broadly classified as global/local or deterministic/stochastic.
There is no best algorithm and use of each depends on problem.
A fast, accurate and easy to code/formulate optimization is de-
sirable.

In practical problems, the designer is interested in the gen-
eral shape of coupler path rather than a small number of precision
points on coupler path. Thus, path synthesis can be formulated
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as a problem in the area of Shape Analysis [13, 16, 17, 18, 19]
by fitting a curve using path points. By converting point fitting
problem to curve matching problem, possible output mechanisms
are constrained to practical ‘smooth’ choices and usually rejects
huge displacements in between precision points or defects. For
comparison, a metric need to be established which approaches
zero when two curves match. Various metrics like distance mea-
sures, Fourier descriptors [20], wavelets [21], cumulative angular
deviant [13], etc. have been used over the years to compare two
curves. Frechet distance, Dynamic time warping or Euclidean
distance are the predominant distance measures which have been
used for curve matching using point sampling [22].

This paper focuses on solving the path synthesis problem us-
ing Fourier based path approximation on which prominent work
has been done by [23, 24, 25]. The Fourier based path synthe-
sis algorithm is a two step process. First, an optimum task path
using the user-input path points is calculated. The subsequent
motivation is to find a mechanism whose coupler path closely
approximates the task path. However, finding the task curve us-
ing Fourier transformation requires time parametrization.

Fourier based path synthesis implementations in previous
publications assume a uniformly sampled data, i.e., the time pa-
rameters attached to the given points are assumed to be uniform.
As a consequence, the Fourier curve carries over time informa-
tion to the path. In a purely geometric sense, this behavior is
undesired. Although the problem has been mentioned in [25]
no work has been done to find a parametrization independent
representation until very recently in [26], where an approach to
eliminate time dependency has been proposed. They try to use
arc length parametrization to capture the geometric features and
eliminate the time parameter. However, it is well-known that the
task curves cannot be arc-length parameterized analytically and
converted into unit speed curves. Thus, the authors numerically
guess the arc length parametrization using the task point polygon
and thus fail to get a time-independent parametrization.

This paper makes original contribution in three areas: 1) the
formulation of a generalized parametrization scheme for non-
uniform Fourier decomposition based path synthesis algorithm
and calculation of optimal task curve. 2) the use of proposed
methodology to generate multiple solutions for same input path
points. 3) the incorporation of design centric constraints in the
mathematical framework for greater control over synthesized
mechanism speed.

Rest of this paper is organized as follows. Section 2 re-
views the existing Fourier based path synthesis algorithm. Sec-
tion 3 introduces a family of parameterizations and establishes
a metric to select the optimum among them. Section 4 pro-
poses additional design-centric constraints to help control syn-
thesized mechanism’s speed over its path. Section 5 discusses
examples and analyzes the fitting of target curve using uniform
parametrization and the proposed optimal parametrization.

2 Fourier based Path Synthesis
In this section, a brief overview of existing Fourier based

path synthesis algorithm is presented. For an in-depth discussion,
refer to work done by [23, 24, 25].

2.1 Approximation of Task Path
The initial objective is to convert input points into a task path

i.e. a curve representing user’s intended path. Path points input
by the user can vary from one to infinity. For one to three points,
the solution curve is a circle and the mechanism is an RR dyad.
Thus, mechanism synthesis of four or more input path points is
of interest.

A Task curve described using Fourier bases can be fitted to
these input points as follows

z
(

2πk
N

)
=

∞

∑
m=−∞

amemi( 2πk
N ) ∀ k ∈ [0,N−1]. (1)

Here, z = x+ iy denote the input path points in complex form
where x and y are the coordinates. m are the frequencies, am are
the Fourier coefficients, k is the sample point index and N is the
total number of sample points. The ‖m‖th frequency is called
as Harmonics. For example, first harmonic involves the curves
described by frequencies m = 1,−1. Thus, a series of points can
easily be used to recover the curve they represent using Discrete
Fourier Transform (DFT).

To find the Fourier coefficients attached to Fourier bases,
inverse discrete Fourier transform can be calculated using

am =
1
N

N−1

∑
k=0

zke−mi( 2πk
N ). (2)

To incorporate both open and closed paths, trigonometric
polynomial curves with an open interval are used to describe the
task curve as shown below

z(t) =
p

∑
m=−p

αmeωomit ∀ t ∈ [0,T ],T < 1. (3)

Here, T is the interval over which the curve is defined. In prac-
tice, task curve is defined using finite number of Fourier basis
which is denoted by p. Literature indicates that seven harmonics
capture the four bar path very accurately and is deemed suffi-
cient.

The coefficients αm to trigonometric bases are referred to
as Fourier descriptors of task curve. These descriptors are calcu-
lated using least square fitting approach which can be formulated
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as

∆ =
n

∑
i=1

∥∥∥∥∥z(ti)−
p

∑
k=−p

αkeikωoti

∥∥∥∥∥
2

. (4)

Analytically solving the least square problem gives a linear
system of equation. This can be solved to find the descriptors
which best fits the input path points. This system of equation can
be defined as follows

ΩX= Y, (5)

where

X= [. . . ,αm, . . . ]
T

m→
, (6)

Ω =

 · · ·
... ∑

n
i=0 ei(k−m)θi

...
· · ·


k→

↓ m, (7)

Y= [. . . ,
n

∑
i=0

z(ti)e−imθi , . . . ]T

m→

. (8)

Here, k and m vary from−p to p. LU decomposition can be used
to solve the above system.

The domain for the open task path representing input path
points remains unknown and can range anywhere from (0,2π].
Finding this domain (T ) is a one-dimensional optimization prob-
lem for minimum error measure defined in Eq. (4). Once the
parameter distribution and total domain of open curve are calcu-
lated, the target curve is fully defined.

2.2 Approximation of Coupler Path
In this section, equation of coupler point for a four-bar

mechanism is approximated using its loop closure equation. The
mechanism is represented by the design parameters x0, y0, l1, l2,
l3, l4, r, θ1, α , φ0 as displayed in Fig. 1.

The analytic equation of coupler point P can be given as

P = A0 + l2eiθ1eiφ + reiα eiθ1eiλ , (9)
A0 = x0 + iy0, (10)
φ = φ0 +ωt. (11)

Y

Xx0

A

y0

l2

A0

θ1

l1
B0

l4

B

l3

P

α

r

φ0

FIGURE 1: Visualization of parameters describing a four-bar mecha-
nism

Finding the relation between coupler angle (λ ) and input
crank angle (φ) leads to the expression

eiλ =
−B(φ)±

√
∆1(φ)∆2(φ)

2A(φ)
, (12)

where

A(φ) = l3(l2e−iφ )− l1, (13)

B(φ) = l2
1 + l2

2 + l2
3 − l2

4 −2l1l2 cos(φ), (14)

∆1(φ) = l2
1 + l2

2 − (l3 + l4)2−2l1l2 cos(φ), (15)

∆2(φ) = l2
1 + l2

2 − (l3− l4)2−2l1l2 cos(φ). (16)

The± sign in the equation represents the two different configura-
tions of a four bar mechanism. It must be noted that this function
is periodic as it consists of only trigonometric functions.

However, the Eq. (12) only gives meaningful results when
the following feasibility condition is followed

∆1(φ)∆2(φ)≤ 0. (17)

Thus, this Eq. (17) constraints the interval over which angle φ ex-
ist. The maximum it can range is [0,2π] in the case it represents
a closed curve.

Eq. (12), being a periodic function when φ=[0,2π], can be
rewritten using Fourier basis as

eiλ =
∞

∑
k=−∞

Ckeikφ . (18)
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Only a small group of Ck associated with low harmonics is con-
sidered to approximate eiλ , just like in approximation of task
path. When φ varies only in some part of [0,2π], the least square
curve fitting method is used to calculate coefficients. The co-
efficients Ck are calculated numerically by sampling points on
the function according to the previous parametrization, evaluat-
ing the function on each point based on crank angle and length
ratios and then least square curve fitting the results to get an ap-
proximate solution. Finding an analytic closed form solution for
each coefficient Ck is not possible.

Using the Eqns. (12) and (18), we obtain

P =
∞

∑
k=−∞

Pkeikωt , (19)

where

P0 = reiα eiθ1C0 +A0, (20)

P1 = reiα eiθ1C1eiφ0 + l2ei(θ1+φ0), (21)

Pk = reiα eiθ1Ckeikφ0 |k 6=0,1. (22)

Thus, an analytic expression has been obtained to describe the
coupler curve using the mechanism parameters x0, y0, l1, l2, l3,
l4, r, θ1, α , φ0.

2.3 Fitting Coupler Path to Task path
The objective is to fit analytical coupler curve to the task

curve. The Task curve T and Coupler path P have been calcu-
lated as

T ≈
p

∑
k=−p

TkeikΦ, (23)

P≈
p

∑
k=−p

Pkeikωt , (24)

where Tk are Task Curve descriptors and Pk are Coupler Curve
descriptors. Φ and ωt lies in range [0,Φmax] where Φmax can lie
anywhere between (0,2π].

Since φ = φ0+ωt, range of φ i.e. input angle for mechanism
is [φ0, φ0+Φmax]. It should be noted that the exact value of input
angle to reach each coupler point depends on the parametrization
of samples i.e. Φi.

For a perfect curve matching, Tk = Pk for all k ∈ [−p, p].
This leads to

T0 =C0reiα eiθ1 +A0, (25)

T1 =C1reiα eiθ1eiφ0 + l2ei(θ1+φ0), (26)

Tk =Ckreiα eiθ1eikφ0 |k 6=0,1. (27)

Following are the design parameters for a four-bar mecha-
nism.

S =

{
l2,

l2
l1
,

l3
l1
,

l4
l1
,x0,y0,θ1,φ0,r,α

}
. (28)

However, we use a slightly modified form of the parameters in
this paper as following:

S =

{
l2,

l2
l1
,

l3
l1
,

l4
l1
,x0,y0,θ1,φ0,C,S

}
, (29)

where

C= r cosα +θ1, S= r sinα +θ1. (30)

The design parameters can be modified such that Tk|k 6=0,1 de-
pends on six variables. It is observed that four of the design vari-
ables, i.e., {l2,x0,y0,θ1} only exist in the expressions for T0 and
T1. As a result, a ten-dimensional search space has been reduced
into a six-dimensional space. The four remaining variables can
be fitted exactly using the complex equations for fitting T0 and T1.
The objective now is to search for optimal

{
l2
l1
, l3

l1
, l4

l1
,φ0,C,S

}
.

To find a least square solution to Eq. (27), the minimum for
C and S is calculated by minimizing the following error function

I = ∑
k 6=0,1
|Ckrei(α+θ1+kφ0)−Tk|2 (31)

= ∑
k 6=0,1

[(Ak ·C−Bk ·S−T x
k )

2 +(Ak ·S+Bk ·C−T y
k )

2], (32)

where Tk = T x
k + iT y

k and Ckeikφ0 = Ak + iBk. Setting partial dif-
ferentials to zero and analytically minimizing the error function
leads to

C+ iS=
∑k 6=0,1 TkC∗k e−ikφ0

∑k 6=0,1 |Ck|2
. (33)

As a result, the least square solution to Eq. (27) can be found
by optimization of four design variables namely

{
l2
l1
, l3

l1
, l4

l1
,φ0

}
.

The optimization space has thus been reduced to a mere four
design variables instead of original ten design variables.

During the discussion, the constraint imposed by the feasi-
bility condition has been ignored. Thus, to generate valid mech-
anisms, an extra relation needs to be satisfied. Rewriting the fea-
sibility condition in terms of four design variables, we get

(
l3
l1
− l4

l1

)2

≤ 1+
(

l2
l1

)2

−2
(

l2
l1

)
cosφ ≤

(
l3
l1
+

l4
l1

)2

. (34)
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All φ in range [φ0, φ0 +Φmax] must satisfy the inequality for the
mechanism to be meaningful. Direct search method has been
used as the optimization method in work by Wu et al. [23]. This
completes the review of Fourier based path synthesis algorithm.

3 Optimum parametrization
Fourier based Path synthesis requires assigning a time pa-

rameter to each of the input path points. Using parameterizations
other than uniform sampling yields different task curves, which
results in a different synthesized mechanism. Thus, an optimum
parameterizations scheme is essential to select the best task curve
to solve the path problem.

Time parameter is not necessarily a problem which needs to
be eliminated. The time dependence of Fourier descriptors can
be exploited to give mechanism designers increased flexibility.
The time parameter decides when the synthesized mechanism
moves over each point. By changing the time distribution, finer
control on motion of coupler point can be established.

In practical scenarios, uniform parametrization results in a
target curve where the end effector takes equal time to pass
through each target point. Thus, the uniform parameter is desired
in cases where the relative time between each target point is re-
quired to be same. Similarly, for cases where the constant speed
of end effector over the target path is required, close to arc length
parametrization would be desired. Analytically, it is not possible
to get the arc length parametrization before the synthesis process,
but a good approximation is the chord length parametrization.
Thus, uniform and chord length parametrization are two impor-
tant parameterizations which have substantial design use-case. A
generalized parametrization incorporating both of these cases is
thus required.

In interpolation path finding problems, chord length based
parameterizations have been used by geometers for a long time.
In the case of path synthesis, formulation in Eq. (4) to define open
task curve is valid for any parametrization, uniform or nonuni-
form, over a specified domain [0,θ ]. This resultant curve inter-
polating the input path points can be calculated using a general-
ized parametrization called centripetal parametrization. It can be
represented as

t0 = 0, (35)

tk =
∑

k
i=1 |Di−Di−1|α

L
, (36)

tn = 1, (37)

where tk represents the parameter for each input path point, Di
represents the cumulative chord length till ith point and L rep-
resents the total cumulative chord length till last point. α is
the parametrization control variable such that α ∈ R and α ≥ 0.

On varying the control variable α , multiple parametrization can
be generated. It must be noted that uniform and chord length
parametrization are special cases when α = 0 and α = 1, respec-
tively.

From this family of parameterizations, the concern now is to
select the best parametrization. Objective it to find specific value
of α such that wiggle in the curve is minimized. This can be done
by minimizing the total arc length of the curve. Analytically, arc
length (La) is defined as

La =
∫ √

1+
(

dz
dt

)2

dt, (38)

where z is the task curve and t is the time parameter. Closed form
solution for the above integration is not possible.

Fortunately, La can also easily be computed numerically
by dividing the curve into many intervals and approximate
these lengths using a line segment. When the curve is divided
into a large number of intervals, a close approximation can be
calculated. Thus, finding the best parametrization is a one-
dimensional minimization problem with objective function be-
ing minimization of arc length. For our implementation, we have
used Nelder-Mead method to numerically solve the minimization
problem. The Algorithm 1 summarizes this approach.

Algorithm 1: Calculation of Optimum Parametriza-
tion

Input: Initial Parametrization (α0)
1 while Residue > ε do
2 Move to neighbour αi
3 Find new Task curve zi = z(αi)
4 Calculate Arc length La,i = La(zi)
5 Calculate Residue=‖La,i−La,i−1‖
6 end

Output: Minimum parametrization (α)

4 Design-Centric Constraints
Design problems come in many flavors. Usually, large vari-

ation in end effector speeds is not desirable. The larger the
changes in speed, the larger are the forces induced on links which
makes dynamic analysis indispensable in these cases. These
large forces can even compromise the rigidity of links making
the kinematic analysis useless.

However, uniform speed over the complete motion of end
effector is not the ideal solution to this problem. Some degree
of speed change is important in mechanisms like quick return
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mechanism. Thus, the possibility of specifying speed restrictions
would greatly benefit the designer.

The ratio of coupler point’s maximum speed to minimum
speed has been used as control variable denoted as Sr. Sr is al-
ways greater than one. The user’s main interest while designing
is to reject mechanisms which do not satisfy Sr for the design
problem. For example, the user might want relatively uniform
speed mechanisms with Sr < 2. This helps the user narrow down
on the particular parametrization which has less wiggle and sat-
isfies speed criteria.

Rewriting the formulation for target path Eq. (3) here for
reference,

z(t) =
p

∑
m=−p

αmeωomit ∀ t ∈ [0,T ],T < 1. (39)

and differentiating the above path curve gives the velocity func-
tion as

v(t) =
p

∑
m=−p

mβmeωomit , (40)

where βm = iωoαm. To analytically find the maximum and mini-
mum velocities, roots of derivative of Eq. (40) are needed. Then,
values of their second derivative at the roots will determine if its
a maximum or minimum. Unfortunately, root finding problem
for any function is an optimization problem in itself.

To avoid the use of optimization, max and min speeds can be
found out by sampling the curve and directly finding the values of
velocity using Eq. (40). The magnitude of this complex velocity
gives us speed. By taking a large number of samples, a good
approximation of Sr can be achieved.

The designer specifies a lower speed ratio bound (Sr,min) and
upper speed ratio bound (Sr,max). Mechanisms of interest lie ex-
clusively in this region. If no limitations are enforced by the user,
then taking Sr,min = 1 and Sr,max = ∞ includes all the possible pa-
rameterizations.

Penalty functions have been used to convert a constrained
optimization problem to an unconstrained one. Literature de-
scribing different types of internal and external penalties is rich.
The quadratic penalty function is used to include these con-
straints within the objective function to find the relevant mecha-
nisms. The inequality constraints are

Sr,min ≤ Sr(z)≤ Sr,max, (41)

which can be rewritten as following inequalities

g1(z) : Sr(z)−Sr,min ≥ 0, (42)
g2(z) : Sr,max−Sr(z)≥ 0. (43)

The new objective function to find optimum parametrization by
minimizing both the arc length and velocity penalty functions
becomes

f (z) = La(z)+P(max(0,−g1(z))+max(0,−g2(z)))2, (44)

where z is task curve, La is arc length, g1,g2 are constraints and P
is the penalty. Tweaking P can lead to good results numerically.

Thus, a method to find a target Fourier curve which has min-
imum wiggle and is constrained by min- max speed has been
outlined above. Using this methodology, the influence of time
parametrization on the path is effectively minimized. If the de-
sign requirement is of uniform time or speed parametrization, α

can directly be set to 0 or 1. If multiple solutions are required for
a problem, a variety of task curve parameterizations can be used
to generate multiple solutions.

The complete Fourier based path synthesis algorithm using
optimum parametrization has been summarized in Algorithm 2.
We have used simulated annealing as the optimization technique
for the minimization problem.

Algorithm 2: Solving the Path Synthesis problem
Input: Set of Path points

1 Calculate Task curve Fourier descriptors using
Optimum parametrization.

2 Fit the Coupler curve to Optimum Task curve and
synthesize a four-bar mechanism.

Output: Four-bar mechanism parameters

5 Examples
In this section, a few examples are presented to demonstrate

the proposed algorithm. First example compares a variety of pa-
rameterizations with optimal parametrization. Second example
seeks to test our algorithm to generate an existing four-bar mech-
anism by inputting its coupler points. Third example tests our al-
gorithm against an unknown set of path points. Fourth example
tests the design-centric velocity constraints on task curve. The
last example displays multiple solutions found for same set of
path points using different parameterizations. Green curves have
been used to represent task curves while blue curves denote the
coupler point paths. The red curves represent coupler path if the
mechanism is assembled in alternate configuration.

5.1 Example 1: Task Curve Comparison
A sample case, for data listed in Table 1, has been shown in

Figs. 2, 3, 4 where least square fitted trigonometric curve is gen-
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erated for five sample input points using different parametriza-
tion techniques. The wiggle in the first two cases is very apparent
in the first two curve. The third curve is relatively better than the
other two. This begs the question, for which value of α does the
best parametrization exists.

TABLE 1: Example 1: Input Path Point Data to analyze effect on Task
path under different parameterizations

X Y

−6.065 1.541

−4.298 2.218

−2.982 2.519

−0.589 2.444

4.436 −1.779

FIGURE 2: Example 1: Task curve calculated using Uniform
Parametrization (α = 0)

FIGURE 3: Example 1: Task curve calculated using Chordal
Parametrization (α = 1)

The proposed optimal parametrization algorithm calculates
that the minimum arc length occurs at α = .4875 for the sample
test-case. Fig. 5 displays the Task curve generated using optimal

FIGURE 4: Example 1: Task curve calculated using Centripetal
Parametrization (α = .5)

parametrization. Fourier descriptors for each curve are described
in Table 2.

FIGURE 5: Example 1: Task curve calculated using Optimum
Parametrization (α = .4875)

TABLE 2: Example 1: Task path Descriptor Data for Parameterizations
in Fig. 2, 3, 4, 5

Task path α = 0 Task path α = 1

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−2 −1.953−0.089i 1.9552 −0.424+1.532i 1.5893

p=−1 −1.355−2.423i 2.7763 −4.508−2.595i 5.2015

p=0 −1.910+1.404i 2.3700 1.727+0.468i 1.7890

p=1 0.155+1.477i 1.4847 −1.892+3.221i 3.7360

p=2 −1.002+1.174i 1.5433 −0.967−1.085i 1.4533

Task path α = .5 Task path α = .4875

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−2 −1.159+0.934i 1.4888 −0.719+0.979i 1.2147

p=−1 −2.539−2.550i 3.5983 −2.759−1.960i 3.3841

p=0 −0.729+1.054i 1.2816 −1.033+1.025i 1.4555

p=1 −0.432+2.173i 2.2154 −0.679+1.752i 1.8792

p=2 −1.205−0.069i 1.2075 −0.875−0.255i 0.9110
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5.2 Example 2: Synthesizing Existing Mechanisms
To test the ability of Path Synthesis to create existing mech-

anisms, a sample mechanism is taken, points from its coupler
path are sampled and then a mechanism is synthesized which
goes through the sampled points. Ideally, we should get the exact
same mechanism. However, a similar mechanism is also accept-
able since the premise is of approximate synthesis.

A sample mechanism as visualized in Fig. 6 has been used
to generate coupler path positions. The mechanism has been de-
fined using the position of its fixed pivots, moving pivots and
coupler coordinates as shown in Table 3. Coupler curve of this
mechanism is sampled and used as input for Path Synthesis al-
gorithm. The least square curves are approximated with seven
Fourier Descriptors for this test cases.

FIGURE 6: Example 2: Path data Generator mechanism used to ana-
lyze effect on Path Synthesis under different parameterizations

TABLE 3: Example 2: Path data Generator Mechanism design param-
eters as shown in Fig. 6

Point X Y

Input link fixed pivot −2.20 0.10

Input link moving pivot −0.97 0.20

Output link fixed pivot 1.15 0.38

Output link moving pivot −2.32 3.51

Coupler Point −0.825 −1.033

We now compare the use of optimum and uniform parame-
terizations for the sampled data. The randomly sampled coupler
curve data used for testing contains ten path points and is given
in Table 4. Fig. 7 represents the uniform parametrization case
while Fig. 8 represents the optimum parametrization case. Ta-
ble 5 and Table 7 contains the Fourier descriptor and Synthesized

mechanism data for uniform parametrization while Table 6 and
Table 8 shows same for optimum parametrization which occurs
at α = .9188. It is observed that optimum parametrization yields
better result than uniform parametrization.

TABLE 4: Example 2: Input non-uniformly sampled point data to ana-
lyze effect of Path Synthesis under different parameterizations

X Y

−0.825 −1.033

−1.249 −0.600

−2.918 0.360

−3.287 0.363

−3.521 0.302

−4.038 −0.178

−4.151 −0.635

−3.541 −1.905

−1.864 −2.352

−0.692 −1.442

FIGURE 7: Example 2: Synthesized mechanism for non-uniformly
sampled input using uniform parametrization

The uniform parametrization result is fundamentally differ-
ent from the initial mechanism which was a crank-rocker mecha-
nism. This can be attributed to the fact that task curve calculated
with uniform parametrization was poor and could not be fitted
with a four bar coupler path. The fit for task curve calculated
with optimal parameterization is extremely good and the coupler
path overlaps most of the task curve.

It must be noted that the mechanisms found using optimiza-
tion techniques are guaranteed local optimum. However, it is un-
certain if these are actually the global minimum in search space.
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FIGURE 8: Example 2: Synthesized mechanism for non-uniformly
sampled input using optimum parametrization

TABLE 5: Example 2: Task path and Coupler path Descriptor Data for
Fig. 7

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−3 0.050+0.124i 0.1336 0.007−0.015i 0.0165

p=−2 0.141−0.044i 0.1478 0.010−0.023i 0.0250

p=−1 0.243−0.219i 0.3267 0.124−0.101i 0.1597

p=0 −2.774−0.664i 2.8520 −2.774−0.664i 2.8520

p=1 1.279−0.529i 1.3840 1.279−0.529i 1.3840

p=2 0.407+0.109i 0.4209 0.449+0.116i 0.4636

p=3 −0.011+0.044i 0.0450 −0.091+0.024i 0.0939

TABLE 6: Example 2: Task path and Coupler path Descriptor Data for
Fig. 8

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−3 0.024−0.021i 0.0324 0.027−0.024i 0.0360

p=−2 0.074−0.035i 0.0821 0.067−0.050i 0.0836

p=−1 0.138−0.198i 0.2410 0.144−0.192i 0.2396

p=0 −2.502−1.019i 2.7016 −2.502−1.019i 2.7016

p=1 1.489+0.140i 1.4954 1.489+0.140i 1.4954

p=2 −0.034+0.052i 0.0625 −0.018+0.061i 0.0632

p=3 −0.001+0.051i 0.0507 −0.010+0.009i 0.0136

TABLE 7: Example 2: Synthesized mechanism parameters Data for
Fig. 7

l1 l2 l3 l4 x0 y0

1.277 2.871 2.540 1.560 −2.925 −1.073

θ1 r α φ0

1.998 1.716 −0.660 3.620

TABLE 8: Example 2: Synthesized mechanism parameters Data for
Fig. 8

l1 l2 l3 l4 x0 y0

2.588 1.298 2.122 2.612 −2.381 −0.358

θ1 r α φ0

−0.022 0.759 −2.832 0.001

Simulated Annealing only guarantees global minimum asymp-
totically over a long time. As mentioned earlier, faster solu-
tions have been preferred in our implementation. Longer runtime
might yield better solutions.

5.3 Example 3: Multiple solutions
In this example, we synthesize multiple four-bar mecha-

nisms for same set of input points. The input data used for this
case is a set of eight path points as given in Table 9. A variety of
mechanisms can be synthesized easily by running the algorithm
for different values of parametrization control variable α . This
results in a slightly different fitted task curve which changes the
end result. Fig. 9, Fig. 10, and Fig. 11 represents mechanisms
synthesized at α = .25, .5, .75, respectively. Table 10, Table 11,
and Table 12 displays the Fourier descriptors for each case while
Table 13, Table 14 and Table 15 displays the synthesized mech-
anism parameters. Thus, multiple solutions can be generated us-
ing different parameterizations for task path.

TABLE 9: Example 3: Input path point data to generate multiple solu-
tions for Path Synthesis Problem

X Y

−0.802 1.278

−1.341 1.090

−2.444 0.401

−3.672 −0.714

−2.757 −1.078

−0.501 −1.153

0.564 −0.539

0.551 0.627

Note the diverse variety of coupler path geometry i.e. open,
closed or self-intersecting profiles in the generated mechanisms.
Also, it can be observed that minor change in the task curve can
result in extremely different solutions. This approach provides
the user immense flexibility to generate multiple mechanisms
without changing any of the input path constraints.
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FIGURE 9: Example 3: Synthesized mechanism for input using
parametrization control parameter α = .25

FIGURE 10: Example 3: Synthesized mechanism for input using
parametrization control parameter α = .5

FIGURE 11: Example 3: Synthesized mechanism for input using
parametrization control parameter α = .75

5.4 Example 4: Design-Centric Constraints
This example demonstrates the effect of design-centric con-

straints on synthesized four-bar mechanism. The input data used
for this case is a set of six path points as given in Table 16. The
design-centric constraint fixes the speed ratios to 5. Fig. 12 repre-
sents the optimal parametrization case without the design-centric

TABLE 10: Example 3: Task path and Coupler path Descriptor Data
for Fig. 9

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−3 −0.054−0.068i 0.0872 −0.156−0.092i 0.1817

p=−2 −0.064+0.244i 0.2525 −0.017+0.239i 0.2391

p=−1 0.320−0.261i 0.4125 0.322−0.133i 0.3487

p=0 −1.259+0.004i 1.2591 −1.259+0.004i 1.2591

p=1 0.450+1.551i 1.6149 0.450+1.551i 1.6149

p=2 −0.109−0.182i 0.2120 −0.132−0.059i 0.1450

p=3 −0.086−0.023i 0.0885 −0.077+0.060i 0.0976

TABLE 11: Example 3: Task path and Coupler path Descriptor Data
for Fig. 10

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−3 −0.066−0.036i 0.0752 −0.064−0.008i 0.0642

p=−2 −0.040+0.212i 0.2156 −0.028+0.159i 0.1611

p=−1 0.311−0.284i 0.4211 0.333−0.259i 0.4218

p=0 −1.305−0.066i 1.3072 −1.305−0.066i 1.3072

p=1 0.491+1.543i 1.6193 0.491+1.543i 1.6193

p=2 −0.082−0.079i 0.1138 −0.152−0.043i 0.1578

p=3 −0.113−0.024i 0.1151 −0.022+0.024i 0.0328

TABLE 12: Example 3: Task path and Coupler path Descriptor Data
for Fig. 11

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−3 −0.078−0.014i 0.0790 −0.102−0.028i 0.1056

p=−2 −0.001+0.180i 0.1795 0.039+0.193i 0.1971

p=−1 0.293−0.305i 0.4234 0.291−0.273i 0.3991

p=0 −1.339−0.124i 1.3450 −1.339−0.124i 1.3450

p=1 0.493+1.538i 1.6155 0.493+1.538i 1.6155

p=2 −0.040+0.003i 0.0405 −0.091+0.037i 0.0987

p=3 −0.137−0.016i 0.1377 −0.035+0.004i 0.0351

constraint while Fig. 13 represents the optimum parametrization
case with design-centric constraint applied. The parametrization
control variable is calculated to be α = .1103 for case without
constraint and α = .6594 for case with constraint. Table 18 and
Table 20 contains the Fourier descriptor and Synthesized mech-
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TABLE 13: Example 3: Synthesized mechanism parameters Data for
Fig. 9

l1 l2 l3 l4 x0 y0

2.027 2.140 6.406 6.141 −0.742 0.662

θ1 r α φ0

−2.674 1.220 1.730 4.222

TABLE 14: Example 3: Synthesized mechanism parameters Data for
Fig. 10

l1 l2 l3 l4 x0 y0

5.149 1.629 5.217 1.764 −0.341 2.466

θ1 r α φ0

2.941 2.792 −4.631 4.881

TABLE 15: Example 3: Synthesized mechanism parameters Data for
Fig. 11

l1 l2 l3 l4 x0 y0

2.663 1.890 2.984 2.326 −0.686 0.781

θ1 r α φ0

−2.911 1.327 1.414 4.413

anism data for optimal parametrization case without the design-
centric constraint. Table 17 and Table 19 shows descriptors for
optimum parametrization with design constraint. It is observed
that both of them yield different mechanism. The velocity plots
in Fig 14 show that there is reduced variation in second case.
Thus, the design-centric constraints can help synthesize a better
four-bar mechanism with desirable speed variation.

TABLE 16: Example 4: Input path point data to analyze effect of Path
Synthesis under design-centric constraints

X Y

−5.088 −0.576

−3.897 −0.338

−3.158 0.840

−2.581 1.391

0.990 −1.028

0.025 −2.995

FIGURE 12: Example 4: Synthesized mechanism for input using opti-
mal parametrization without design-centric constraint

FIGURE 13: Example 4: Synthesized mechanism for input using opti-
mal parametrization with design-centric constraint

TABLE 17: Example 4: Task path and Coupler path Descriptor Data
for Fig. 13

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−2 1.024−1.336i 1.6839 1.024−1.336i 1.6839

p=−1 −0.696+3.302i 3.3741 −0.696+3.302i 3.3741

p=0 −4.988+0.163i 4.9906 −4.988+0.163i 4.9906

p=1 −1.416−2.093i 2.5266 −1.416−2.093i 2.5266

p=2 0.981−0.616i 1.1588 0.981−0.616i 1.1588

6 Conclusion
In this paper, we have presented a scheme defining family

of non-uniform parametrization scheme for Fourier descriptor
based path synthesis of a four-bar mechanism. Original contri-
butions include establishing optimality criteria based on mini-
mization of arc length to find the optimal parametrization. Addi-
tional design-centric constraints have been proposed to help user
establish some control over the coupler speed. The flexibility
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TABLE 18: Example 4: Task path and Coupler path Descriptor Data
for Fig. 12

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−2 −0.211+0.804i 0.8313 −0.157+0.716i 0.7331

p=−1 −1.849−1.210i 2.2096 −1.819−1.227i 2.1943

p=0 −2.307−0.607i 2.3854 −2.307−0.607i 2.3854

p=1 −0.187+0.501i 0.5350 −0.187+0.501i 0.5350

p=2 −0.567−0.120i 0.5795 −0.717−0.078i 0.7214

TABLE 19: Example 4: Synthesized mechanism parameters Data for
Fig. 13

l1 l2 l3 l4 x0 y0

6.189 2.754 6.297 2.894 −10.761 −6.860

θ1 r α φ0

0.322 10.577 0.723 4.443

TABLE 20: Example 4: Synthesized mechanism parameters Data for
Fig. 12

l1 l2 l3 l4 x0 y0

5.127 1.622 4.947 1.826 −8.102 −11.715

θ1 r α φ0

1.272 12.997 0.079 3.176

FIGURE 14: Example 4: Comparison of speed for the two mechanisms
generated

provided to the user helping him generate more than one mecha-
nisms based on different parametrization is also novel. Many ex-
amples have been presented to display the immense usefulness of
the model over previous Fourier based path synthesis algorithms.
By incorporating parameterizations which were neglected previ-
ously, the proposed framework proves to be a generalized ap-

proach to path synthesis for four-bar mechanisms.
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