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ABSTRACT
This paper presents a generalized framework to solve m-

pose, n-path points mixed synthesis problems, known as Alt-
Burmester problems, using a task-driven motion synthesis ap-
proach. We aim to unify the path and motion synthesis prob-
lems into an approximate mixed synthesis framework. Fourier
descriptors are used to establish a closed-form relationship be-
tween the path and orientation data. This relationship is then
exploited to formulate mixed synthesis problems into pure mo-
tion synthesis ones. We use an efficient algebraic fitting based
motion synthesis algorithm to enable simultaneous type and di-
mensional synthesis of planar four-bar linkages.

keywords: Alt-Burmester, Mixed Synthesis, Path Synthesis,
Motion Synthesis, Fourier Descriptors, Planar Four-bar linkage,
Type and Dimensional Synthesis

1 Introduction
Conventionally, mechanism synthesis problems have been

categorized and studied independently as path, motion, and func-
tion synthesis problems [1]. Path synthesis problems specify
only path-point coordinates (xi,yi), while motion synthesis spec-
ify only pose constraints (x j,y j,ζ j). In function synthesis, only
input-output angle sets (θk,ψk) are specified. Unfortunately,
most of the real world problems do not conform to such a rigid
categorization – many practical problems provide a mixture of

∗Address all correspondence to this author at anurag.purwar@stonybrook.edu

path, motion and function synthesis requirements. However, a
synthesis approach which fluidly incorporates all the three con-
ventional synthesis problems has been elusive. As a result, de-
signers have to often compromise on design specifications. In
this paper, the focus is on synthesis of planar four-bar mecha-
nisms for a hybrid of path and motion synthesis problems. This
problem formulation, which consolidates both path and orienta-
tion data, has been termed as mixed synthesis in this paper.

Prof. Murray’s group termed the combined path and mo-
tion problems as the Alt-Burmester problems [2] named after
Alt’s [3] and Burmester’s [4] work on path and motion gener-
ation, respectively. Brake et al. [5] discuss the dimensionality of
solution sets for a variety of path-point and pose combinations.
However, a finite number of solutions exist only for a subset of
possible m-pose, n-path point synthesis problem. For example,
there exist finite solutions for nine path-points and for five poses
independently. We define such problems to be fully constrained
problems. For lesser number of path-points or poses, usually an
infinite number of solutions are obtained. Subsequently, the au-
thors explore only fully-constrained or under-constrained prob-
lem sets where up to nine constraints can be used to find four bar
mechanism parameters. This ignores the vast majority of over-
constrained problems in m-pose, n-path point mixed synthesis
family of problems, where exact solutions are not possible and
only approximate, albeit useful solutions, can still be obtained.
This is reflective of real-world design problems, which usually
impose a large number of often challenging constraints.
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FIGURE 1: An Overview of our Approach to the Alt-Burmester Problems: (a) specify m-pose, n-path points; (b) a task curve is fit through the m+n
path points using Fourier series; (c) use the harmonic content of the path data to find the missing orientations at the n-path points; and (d) finally,
compute both type and dimensions of planar four-bar linkages.

A graphical approach has been presented by Zimmerman [6]
to solve the mixed path, motion and function problem us-
ing sketcher tool built in modern CAD softwares. The pro-
posed methodology can conveniently solve under-constrained
and fully-constrained mixed synthesis problems and generate
four-bar mechanisms. The advantage of this approach is that
it comes close to unifying path, motion and function synthe-
sis. However, this methodology is unable to solve generalized
m pose, n path-point synthesis problems, which may be over-
constrained.

Motion synthesis turns out to be a mathematically less com-
plex problem than path synthesis as each dyad can be calculated
independently effectively halving the number of unknowns in the
equations. Typically, path synthesis problems involve solving
a nonlinear system of equations. We have recently presented a
generalized framework for solving motion synthesis problems
with a fast algorithm that solves a linear system of equations
using singular value decomposition [7, 8, 9, 10, 11]. The algo-
rithm produces multiple solutions and can compute both the type
and dimensions of the four-bar mechanisms. In this paper, we
are presenting an approach to solve Alt-Burmester problems by
reducing it to pure motion synthesis problems so that the afore-
mentioned algorithm can be leveraged. In a planar four-bar link-
age, path of a coupler point is inextricably tied to the orientation
of the coupler. This coupling can be revealed by analyzing the
harmonic content of the path and orientation data. First, an ana-
lytical relation between the orientation data and path-point data
using the harmonic breakdown of the loop closure equation is
calculated. Then, this relation is used to reformulate the mixed
synthesis problem into a motion synthesis problem by attaching
adequate orientations to each input path point and consequently
turning them into poses. The Fourier approximation based an-
alytical approach proposed in this paper can handle almost all
possible variations of path points or poses. Once, the problem
has been converted into a pure motion synthesis problem, we
re-purpose our algebraic fitting approach to solve for four-bar
linkages. Fig. 1 provides an overview of this approach.

We note that here mixed synthesis does not refer to the

mixed exact-approximate path or motion synthesis, where we
have a mix of exact and approximate constraints. Our definition
of mixed refers to a mixture of path-point and pose constraints.

This paper makes original contribution on three fronts: 1)
the formulation of a Fourier descriptor based closed form rela-
tionship between coupler orientations and path, 2) the novel use
of this relationship to solve the generalized m-pose, n-path point
mixed synthesis problem, and 3) the incorporation of task-driven
algebraic fitting based motion synthesis within the mixed syn-
thesis algorithm for synthesis of planar dyads. We note that the
simultaneous type and dimensional synthesis of planar mecha-
nisms is enabled by the algorithm presented in [11] and this
paper retains that aspect of synthesis.

Rest of the paper is organized as follows. Section 2 calcu-
lates a new path-orientation formulation from existing four-bar
loop closure Fourier decomposition. Section 3 discusses the use
of path-orientation relationship to reformulate mixed synthesis
into motion synthesis problems. Section 4 reviews algebraic fit-
ting based motion synthesis algorithm. Section 5 proposes the
new algorithm to solve mixed synthesis problem. In the end, in
section 6, we present a few examples of mixed synthesis prob-
lems.

2 Fourier Descriptors based relations
Use of Fourier descriptors is abundant in the domain of

mechanism synthesis. It has been used for planar four bar mech-
anism synthesis using optimization routines [12, 13, 14, 15, 16],
atlas-based search algorithms [17, 18] and machine learning ap-
proach [19]. Fourier descriptors have also been used to synthe-
size spherical [20] and spatial mechanism [21]. A class of single
degree of freedom open-loop mechanisms termed as planar cou-
pled serial chain mechanisms [22, 23] can be generated with the
help of Fourier descriptors.

In this section, we are interested in exploring the relation-
ship between the coupler path and coupler orientation to estab-
lish a closed form relationship between them. This would give us
a framework for dealing with both pose and path constraints si-
multaneously. Path and motion synthesis formulations which use
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Fourier decomposition of four-bar closure equation [14, 15, 16]
are used as a starting point here. In [16], Li et al. presented
a decomposition of the design space of four-bar mechanisms by
using Fourier descriptors in the context of planar motion approx-
imation.

A four-bar mechanism is represented by its design parame-
ters x0, y0, l1, l2, l3, l4, r, θ1, and α as displayed in Fig. 2. Har-
monic decomposition of four-bar loop closure equation has been
analyzed to independently fit rotational and translational Fourier
descriptors. Coupler angle λ represents the orientation of cou-
pler link with respect to fixed link at any given instant. Point P
is the location of the coupler point in the global frame. Coupler
orientation ζ refers to the orientation of end effector attached at
the coupler point at any time. δ and λ are two additional angles
defined with reference to θ1 as shown in figure. Our goal is to
find an explicit closed form relationship between coupler path
and orientation which forms the heart of our mixed synthesis al-
gorithm.
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FIGURE 2: Visualization of parameters describing a four-bar mecha-
nism

2.1 Coupler angle
The Fourier series representation of the coupler angle (λ )

for a four bar mechanism is given as

e jλ =
∞

∑
k=−∞

Cke jkφ =
∞

∑
k=−∞

Cke jkωte jkφ0 , (1)

where Ck are the harmonic descriptors of coupler angle. Here, φ

is the crank angle, φ0 the initial crank angle, and ω is the constant
angular speed of the input link.

2.2 Coupler path
The analytic equation which defines the path (P) of coupler

point for a four bar mechanism is

P = A0 + l2e jθ1e jφ + re jα e jθ1e jλ , (2)

where A0 is the position of actuator fixed pivot, l2 is the length
of actuator link, θ1 is the angle of fixed link, and r and α are
the coupler parameters. Being a periodic function, it can also be
represented as a Fourier series:

P =
∞

∑
k=−∞

Pke jkωt . (3)

Substituting (1) into (2) and then equating resulting (2) and
(3), we get harmonic descriptors Pk for path as following:

P0 = C0re j(α+θ1)+( jy0 + x0); k = 0, (4)

P1 = C1e jφ0re j(α+θ1)+ l2e jθ1 e jφ0 ; k = 1, (5)
Pk = Cke jkφ0re j(α+θ1); k 6= 0,1. (6)

2.3 Coupler orientation
The orientation (ζ ) at the coupler point for a four bar mech-

anism can be defined as

ζ = δ +λ +θ1 = arg(e j(δ+λ+θ1)), (7)

where δ is the fixed angle at which moving frame is attached to
coupler with respect to θ1 + λ . As λ varies periodically while
δ and θ1 remain constant, the orientation can be decomposed
harmonically as

e j(δ+λ+θ1) =
∞

∑
k=−∞

C∗k e jkωt (8)

where C∗k are the harmonic descriptors for orientation and defined
as

C∗k =Cke j(δ+θ1)e jkφ0 . (9)
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2.4 Path-orientation relation
With the above relations, it is now possible to find explicit

closed form relations between the fourier descriptors of coupler
path and coupler orientation data. Using Eqns. (4), (5), (6), and
(9), relationship between the harmonic descriptors of path (Pk)
and orientation (C∗k ) is found to be

C∗0 = (P0 + z2)z1, (10)
C∗1 = (P1 + z3)z1, (11)

C∗k = Pkz1, (12)

where

z1 =
e j(δ−α)

r
, (13)

z2 =−(x0 + jy0), (14)

z3 =−(l2e jθ1e jφ0). (15)

Using the above relationship, the orientation at coupler point
can be defined exclusively using path harmonic descriptors as
follows

e jζ (t) = z1

(
z2 + z3e jωt +

∞

∑
k=−∞

Pke jkωt

)
. (16)

Subsequently, using Eq. (16) for n path points, the system of
equation describing orientation at each path point turns out to be


e jζ1

e jζ2

...
e jζn

=


1 e jωt1 ∑

−p
k=p Pke jkωt1

1 e jωt2 ∑
−p
k=p Pke jkωt2

...
...

...
1 e jωtn ∑

−p
k=p Pke jkωtn


 z1z2

z1z3
z1

 . (17)

Thus, the orientations at different points of a four bar cou-
pler path are dependent on path descriptors and three complex
variables z1,z2, and z3, which are termed as Mixed Synthesis
Parameters (MSP). The MSP are dependent on four-bar mecha-
nism design parameters according to Eqns. (13), (14), and (15).
Eq. (17) is key to the mixed synthesis formulation. It will help
us find orientation information for path points as discussed in the
next section.

3 Calculating unknown orientations
The aim of this section is to reformulate m-pose, n-path

mixed synthesis problems into a m + n-pose motion synthesis

problems. To enable that, generation of orientation data for n
path points and converting them to n poses is required. Eq. (17)
will be used to accomplish this objective.

First, for a general m-pose, n-path mixed synthesis problem,
a smooth task path with low harmonic Fourier descriptors (Tk)
passing through m+n points can be written as

T ≈
p

∑
k=−p

TkeikΦ. (18)

To calculate descriptors for uniform phase parametrization, in-
verse discrete Fourier transform can be calculated. Even open
path curves can be incorporated using a least square fitting ap-
proach which can be formulated as minimization of

∆ =
n

∑
i=1

∥∥∥∥∥z(ti)−
p

∑
k=−p

αkeikωoti

∥∥∥∥∥
2

, (19)

where ∆ is the error measure and z(ti) are the complex-valued
point data at time ti.. Analytically solving the least square prob-
lem gives a linear system of equation as follows

ΩX= Y, (20)

where

X= [. . . ,αm, . . . ]
T

m→
, (21)

Ω =

 · · ·
... ∑

n
i=0 ei(k−m)θi

...
· · ·


k→

↓ m, (22)

Y= [. . . ,
n

∑
i=0

z(ti)e−imθi , . . . ]T

m→

. (23)

Here, k and m vary from −p to p which denote the column and
row index of an element in the matrix. LU decomposition can be
used to solve the above system. More details can be found in the
work done by Wu et al. [14]. In a companion paper [24], we have
proposed a method to calculate optimal parametrization for task
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curve for Fourier descriptor fitting of the path data. In our imple-
mentation, task curves are represented using five descriptors i.e.
p ∈ [−2,2].

The reasoning behind using a low harmonic task curve is
supported in literature [16,25], which says that the magnitude of
high harmonics for coupler path of a four-bar mechanism has an
insignificant impact. Thus, the fitted task path is a good prospec-
tive four bar coupler curve.

The intention now is to find the values of MSP i.e.
{z1,z2,z3} using available orientation data and subsequently gen-
erate unknown orientations. There are multiple ways the relation
given in Eq. (17) can be used to convert mixed synthesis into
motion synthesis problem depending on the MSP fitting problem
being under-constrained, fully-constrained or over-constrained.

For a fully-constrained MSP fitting problem, three poses are
required to calculate the MSP directly from Eq. (17). Physically,
this condition makes perfect sense as the user might know ori-
entations at the initial position, final position and an additional
intermediate location while a sequence of path points might be
given in addition.

For under-constrained MSP fitting problem, there are only
two or one poses. As a result additional constraints are required
to uniquely calculate the MSP. The MSP are dependent on four-
bar mechanism parameters according to Eqns. (13), (14), and
(15). These equations can be used to generate additional con-
straints which are called Mixed Constraints (MIC). The three
possible MIC are

1. Specify actuating fixed pivot i.e. {x0,y0}
2. Specify coupler parameters i.e. {r,α,δ}
3. Specify scale of input link, orientation of fixed pivot line,

and initial angle i.e. {l2,θ1,φ0}

Thus, if two poses are input by the user, one MIC is required to
fully define the system of equations in Eq. (17). If only one pose
is specified by user, two MIC are required to solve the problem.
Two pose problem is fairly common when only the first and last
orientations are important, such as in pick-and-place operations.
The MIC also mirror practical user-specified constraints, such
as selection of the location of the fixed pivot where an actuator
might be situated. In another case, there might be a restriction on
coupler link dimensions. Thus, the MIC represent a set of prac-
tical design constraints, which provide designers useful tools.

It is important to note that a pure path synthesis problem
cannot be restructured into a motion synthesis problem without
fully defining all three MSP. However, constraining all MSP si-
multaneously makes the synthesis trivial as by fixing all MIC,
the four-bar linkage is already fixed.

For over-constrained MSP fitting problems, the number of
poses specified is more than three. In this case, a least square so-
lution to Eq. (17) can be calculated using complex Singular Value
Decomposition (SVD). Real SVD solvers, which are more easily
available, can also be used by reducing the complex system of

equation in Eq. (17) into an equivalent real system of equation in
accordance with [26]. The K1 formulation presented in [26] has
been used in our implementation. According to the formulation,
a complex system of equation

(A+ iB)(x+ iy) = b+ ic (24)

can be written as a real system of equation[
A −B
B A

][
x
y

]
=

[
b
c

]
(25)

Finding least square solution to this equivalent real system of
equations gives the solution to original complex problem and val-
ues of MSP can easily be calculated in over-constrained cases.

Once the values of MSP z1,z2,z3 are calculated using m
poses, orientations at n path points can be found out by simple
matrix multiplication using the system of equation in Eq. (17).
As a result, n path points and m poses are converted to m+ n
poses. The motion synthesis algorithm can now be used to calcu-
late dyads. A review of algebraic fitting based motion synthesis
algorithm is discussed in next section.

4 Motion synthesis algorithm
Now that the mixed synthesis problem has been reformu-

lated as motion synthesis problem, solution mechanisms can be
achieved by calculating the dyads. Algebraic fitting based mo-
tion synthesis algorithm [7, 8, 9, 10] has been used in our imple-
mentation. The goal of this approach is to map the poses into
image space and fit geometric constraint manifolds described us-
ing image space coordinates to calculate the least square solution
dyads.

This approach enables us to simultaneous carry-out type and
dimensional synthesis of four-bar linkages i.e. it takes into con-
sideration the possibility of both revolute and prismatic joints.
Another benefit of the approach is its fast and efficient computa-
tion.

First, using kinematic mapping, each of the user-defined
pose {d1,d2,φ} is mapped to quaternion space defined by a four-
dimensional vector Z = {Z1,Z2,Z3,Z4}. This quaternion space
is also termed as the Image Space. The relations mapping real
space to image space are

Z1 =
1
2
(d1 cos

φ

2
+d2 sin

φ

2
), (26)

Z2 =
1
2
(−d1 sin

φ

2
+d2 cos

φ

2
), (27)

Z3 = sin
φ

2
, (28)

Z4 = cos
φ

2
. (29)
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The geometric motion constraint which every dyad needs to
satisfy is given by the G-constraint manifold described as

q1(Z2
1 +Z2

2)+q2(Z1Z3−Z2Z4)+q3(Z2Z3 +Z1Z4)

+q4(Z1Z3 +Z2Z4)+q5(Z2Z3−Z1Z4)+q6Z3Z4

+q7(Z2
3 −Z2

4)+q8(Z2
3 +Z2

4) = 0, (30)

where qi(i = 1,2, ·,8) are the homogeneous coefficients of the
quartic manifold surface in image space. Thus, the coefficients
for G-manifold defined for each pose can be calculated using

Ai1 = Z2
i1 +Z2

i2 (31)
Ai2 = Zi1Zi3−Zi2Zi4 (32)
Ai3 = Zi2Zi3 +Zi1Zi4 (33)
Ai4 = Zi1Zi3 +Zi2Zi4 (34)
Ai5 = Zi2Zi3−Zi1Zi4 (35)

Ai6 = Zi3Zi4 (36)

Ai7 = Z2
i3−Z2

i4 (37)

Ai8 = Z2
i3 +Z2

i4 (38)

where i is the pose index ranging from i = (1,2, · · · ,n). Con-
solidating all the G-manifold equations results in the following
over-constrained homogenous linear system on equation

Aq = 0 (39)

where

A =


A11 A12 A13 A14 · · · · · · · · · A18
A21 A22 A23 A24 · · · · · · · · · A28

...
...

...
...

...
...

...
...

An1 An2 An3 An4 · · · · · · · · · An8,

 (40)

q =
[

q1 q2 · · · q8
]T (41)

The least square solution to this homogeneous system of equa-
tion can easily be found out using the full singular value decom-
position of G-manifold coefficient matrix A. The last column of
the right singular vector, which corresponds to the smallest sin-
gular value, is the least square solution. However, to generate
a mechanism, at least two dyads are required. Thus, the right
singular vector corresponding to the second-most and third-most
smallest singular value is also taken as a possible solution. Space

spanned by these three orthonormal vectors reflect a family of
possible dyads which can be used for given poses.

For dyads to make physical sense, following extra C-
manifold constraints are required to be satisfied

q1q6 +q2q5−q3q4 = 0 (42)
2q1q7−q2q4−q3q5 = 0 (43)

An analytical solution to the minimization problem to satisfy the
constraints gives a quartic equation. As a result, up to four unique
dyads are generated. Combining any of the two dyads results in
a solution four-bar mechanism.

The above methodology for motion fitting works for five or
more poses when the system of equation is fully-constrained or
over-constrained. To handle three or four pose under-constrained
cases, additional Motion Synthesis constraints (MOC) also
called geometric constraints outlined in [8] are used to specify
the position of fixed or moving pivots using line or point con-
straints.

As a result, the path synthesis problem is solved and
prospective solutions are generated. Using this motion synthe-
sis algorithm also enables us to simultaneously carry out type
and dimensional synthesis. However, solutions generated might
be characterized by circuit and branch defects i.e. reaching all
the path points in a given assembly mode might be impossible.

5 Mixed synthesis algorithm
A key advantage of the methodology outlined above is that

it can handle both motion and mixed synthesis problems within
it seamlessly. Various permutations of (0,1, · · · ,m) poses and
(0,1, · · · ,n) path point problems are presented in Table 1. The
legends in the table are MOC = Motion Synthesis constraint [8],
MIC = Mixed Synthesis Constraint, FD = Fully Defined, and
X=trivial or undefined. The * refers to conditions where a
Fourier task curve with just four points needs to be fitted and
would have unsymmetrical descriptors.

Motion Synthesis constraints can be used to specify the po-
sition of fixed or moving pivots using line or point constraints
or any other compatible geometric constraint; see [8] for de-
tails. Mixed Synthesis Constraints, described earlier, involve
constraints on actuating pivot, coupler dimensions, and other
mechanism parameters. Fully Defined entails that no extra con-
straints are needed to exactly or least square solve the mixed syn-
thesis Eq. (17). If any of the MSP fitting problem or Motion fit-
ting problem is under-constrained, the mixed synthesis problem
is under-constrained.

Except for the cases involving zero poses, Eq. (17) can be
used to solve the generalized problem. When the synthesis prob-
lem has zero poses, the Fourier descriptor based path synthesis
algorithm [14] is used. It must be noted that except for the case
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TABLE 1: Various Possibilities for Unified Motion, Path and Mixed
Synthesis Problem

Path Points

0 1 2 3 4 n

Poses

0 X X X X FD∗ FD

1 X X X 2 MIC∗ 2 MIC 2 MIC

2 X X 1 MIC∗ 1 MIC 1 MIC 1 MIC

3 2 MOC 1 MOC∗ FD FD FD FD

4 1 MOC FD FD FD FD FD

5 FD FD FD FD FD FD

m FD FD FD FD FD FD

where there are no poses, the synthesis calculates both type and
dimensions. However, cases with only path points are branch
defect free.

The algorithm to solve the Alt-Burmester problems can be
summarized as follows

Algorithm 1: Algorithm for Unified Motion, Path and
Mixed Synthesis

Input: Path points and Poses
1 if n(Path points+poses)≥ 4 then
2 Calculate task curve fourier descriptors
3 continue
4 if n(Pose)=0 then
5 perform Fourier based path synthesis
6 else
7 perform mixed synthesis
8 end

Output: Synthesized mechanism

6 Examples
In this section, some examples are discussed to illustrate the

usefulness of proposed algorithm. First example aims to validate
the approach by using path and poses from an existing mecha-
nism. Second example solves a fully constrained mixed synthesis
problem involving three poses and ten path points. Third exam-
ple tests our algorithm for an over-constrained mixed synthesis
problem with four poses and five path points. Fourth and fifth
examples deal with under-constraint mixed synthesis cases and
require additional mixed- and motion-constraints, respectively.
Demonstrating valid results from each of these cases proves the
robustness of proposed algorithm an all possible situations. It
also displays the flexibility of the algorithm and its ability to in-
corporate various constraints.

6.1 Example 1: Existing Mechanism
To validate the proposed mixed synthesis algorithm, points

and poses from a known planar four-bar mechanism are taken
and then our algorithm is used to synthesize mechanisms. Ide-
ally, we should get the exact same mechanism. However, a simi-
lar mechanism is also acceptable since approximations can occur
at various steps, from task curve generation to algebraic fitting of
the pose data. Max angular deviation for poses is within 1◦ for
displayed configuration.

A sample mechanism displayed in Fig. 3 is used to generate
seven path and three pose constraints. The mechanism has been
defined using the position of its fixed pivots, moving pivots and
coupler coordinates as shown in Table 2.

FIGURE 3: Example 1: Known target mechanism

TABLE 2: Example 1: Sample mechanism design parameters as shown
in Fig. 3

Point X Y

Input link fixed pivot −2.20 0.10

Input link moving pivot −0.97 0.20

Output link fixed pivot 1.15 0.38

Output link moving pivot −2.32 3.51

Coupler point −0.825 −1.033

The sampled poses and path points are listed in Table 3.
These constraints are used as input to mixed synthesis algorithm.
Four solution dyads are output as listed in Table 4. This also
allows us to reverse-engineer a known mechanism since there
are six planar four-bars that can satisfy the given constraints.
The closest dyads to original mechanism have been visualized in
Fig 4. It is observed that the mechanism generated is very sim-
ilar to the original mechanism. This approximate result is due
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to the best-fitted low harmonic task curve following the original
coupler curve closely but not exactly.

TABLE 3: Example 1: Input constraint data

S.No Constraint X Y ζ

1 Pose −0.825 −1.033 1.604

2 Pose −1.655 −0.272 1.169

3 Point −2.640 0.290

4 Point −3.500 0.310

5 Point −4.050 −0.210

6 Pose −4.102 −1.052 0.923

7 Point −3.580 −1.870

8 Point −2.630 −2.340

9 Point −1.560 −2.270

10 Point −0.800 −1.740

FIGURE 4: Example 1: Mechanism generated using mixed synthesis
algorithm

TABLE 4: Example 1: Output dyad data

Dyad Fixed Pivot Moving Pivot Coupler Point

1 0.679,4.534 0.046,5.419 −0.825,−1.033

2 −6.845,8.102 −2.147,3.587 −0.825,−1.033

3 2.031,−0.084 0.438,2.611 −0.825,−1.033

4 −1.998,−0.009 −0.737,0.182 −0.825,−1.033

6.2 Example 2: Fully constrained mixed synthesis
In this example, the input constraint data consists of three

poses and ten path points which fully constrains the mixed syn-
thesis problem. The constraint data input to mixed synthesis al-
gorithm has been displayed in Table 5. The two dyads generated
as output have been shown in Table 6. The final mechanism has
been displayed in Fig 5 and Fig 6. It can be observed that a good
match has been established with the constraints. Max angular
deviation at nearest points to specified poses is within 1◦. Note
that in this case, the path-orientation relationship has an exact
solution i.e. MSP are uniquely determined using SVD.

TABLE 5: Example 2: Input constraint data

S.No Constraint X Y ζ

1 Pose −9.853 1.139 0.336

2 Point −7.700 2.020

3 Point −5.880 2.060

4 Point −2.800 1.680

5 Point −1.540 0.690

6 Point −0.370 −0.020

7 Pose 0.754 −0.400 6.150

8 Point 2.560 −0.770

9 Point 3.660 −0.720

10 Point 4.680 −0.570

11 Point 5.850 −0.110

12 Point 6.790 0.570

13 Pose 7.482 1.309 0.530

FIGURE 5: Example 2: Fully-constrained mixed synthesis for three
poses and ten path points

One of the major advantages of mixed synthesis is the addi-
tional flexibility it imparts to users while specifying inputs and
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FIGURE 6: Example 2: Mixed synthesis- zoomed out

TABLE 6: Example 2: Output dyad data

Dyad Fixed Pivot Moving Pivot Coupler Point

1 −7.876,−19.931 −12.228,21.484 −9.853,1.139

2 5.363,5.873 −2.929,1.483 −9.853,1.139

generating good solutions. Using a pure motion synthesis algo-
rithm, the user would have to input all the data as poses even if
the problem demanded otherwise. This would lead to an over
constrained motion problem, which when solved using existing
kinematic mapping based algebraic fitting approach [7, 8, 9, 10]
usually produced poor solutions. A comparable motion synthesis
problem for the same path points is displayed in Fig 7. It can be
observed that the solution provides a very poor fit to the given
constraints.

FIGURE 7: Example 2: Over-constrained motion synthesis for thirteen
poses produces a poor solution.

6.3 Example 3: Over-constrained mixed synthesis
In this example, the input constraint data consists of four

poses and five path points. Greater than three input poses over

constrains the MSP calculation. This make mixed synthesis
problem over-constrained. The constraint data input to mixed
synthesis algorithm is shown in Table 7. The four dyads gen-
erated as output have been shown in Table 8. One of the final
mechanisms has been displayed in Fig 8. The mechanism is sat-
isfactory as it closely follows the path input specified. Max angu-
lar deviation at nearest points to specified poses is within 15◦ for
the displayed dyads. Note that in this case, the path-orientation
relationship has an approximate solution i.e. least square fitted
MSP are determined using SVD.

TABLE 7: Example 3: Input constraint data

S.No Constraint X Y ζ

1 Pose −2.750 −1.947 0.000

2 Pose −0.674 −1.947 0.668

3 Point −0.290 −0.180

4 Point −0.580 1.070

5 Pose −1.662 1.797 0.887

6 Point −3.100 2.090

7 Point −3.960 2.200

8 Point −5.250 2.260

9 Pose −5.985 2.196 2.142

FIGURE 8: Example 3: Over-constrained mixed synthesis for four
poses and five path points

6.4 Example 4: Under-constrained mixed synthesis
with mixed constraints

This example deals with the under-constrained mixed syn-
thesis problem where two poses and four path points are speci-
fied in the input. Lesser than three input poses makes MSP fitting
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TABLE 8: Example 3: Output dyad data

Dyad Fixed Pivot Moving Pivot Coupler Point

1 −5.603,−0.821 −6.769,−1.098 −2.750,−1.947

2 −7.071,−0.967 −7.871,1.940 −2.750,−1.947

3 −7.610,1.820 −12.065,−16.791 −2.750,−1.947

4 −4.140,−0.984 −5.258,−1.968 −2.750,−1.947

under-constrained. This makes mixed synthesis problem under-
constrained. To solve for MSP, an additional mixed constraint is
required which could specify any of z1,z2,z3. The constraint data
input to mixed synthesis algorithm has been displayed in Table 9.
A MIC is used to specify z2 by specifying preferred location of
a fixed joint at point (1,2). The four dyads generated as output
have been shown in Table 10. One of the final mechanisms has
been displayed in Fig 9. It can be observed that the generated
mechanism closely satisfies path and mixed constraints and thus
is useful. Max angular deviation at nearest points to specified
poses is within 45◦ in displayed dyads. Note that in this case, the
path-orientation relationship has infinite solutions and the use of
MIC restricts the solution space to a unique MSP.

TABLE 9: Example 4: Input constraint data

S.No Constraint X Y ζ

1 Pose 4.962 −0.514 0.134

2 Point 3.850 −1.480

3 Point 1.920 −0.740

4 Point 0.850 0.760

5 Point 3.360 1.650

6 Pose 4.900 1.178 0.510

TABLE 10: Example 4: Output dyad data

Dyad Fixed Pivot Moving Pivot Coupler Point

1 14.769,24.102 −2.837,−4.531 4.962,−0.514

2 −12.641,−7.054 −3.133,−0.666 4.962,−0.514

3 1.261,2.610 1.739,−1.431 4.962,−0.514

4 4.357,0.283 6.270,−0.729 4.962,−0.514

FIGURE 9: Example 4: Under-constrained mixed synthesis for two
poses and four path points using additional mixed constraint

6.5 Example 5: Under-constrained mixed synthesis
with motion constraints

This example deals with another under-constrained mixed
synthesis problem where three poses and one path point is speci-
fied in input. This case is under-constraint because the total pose
and path constraints are just four. Even though three poses spec-
ified can be used to calculate the MSP, an additional motion con-
straint is required to solve the synthesis problem. The constraint
data input to mixed synthesis algorithm has been displayed in
Table 11. A line constraint is used as MOC in the example pre-
sented. The line segment is defined by its end points (−4,1) and
(1,4). The three dyads generated as output have been shown in
Table 12. One of the final mechanisms has been displayed in
Fig 10. It can be observed that the generated mechanism closely
satisfies path constraints. Max angular deviation at nearest points
to specified poses is within 1◦ for the displayed dyads. Also, both
the fixed pivots fall on the line constraint specified. Thus, the
synthesis problem is successfully solved. Note that in this case,
it is not the path-orientation relationship that is under-defined but
the algebraic fitting algorithm which requires at-least five poses
to be fully defined.

TABLE 11: Example 5: Input constraint data

S.No Constraint X Y ζ

1 Pose −2.018 −1.391 0.146

2 Pose 0.288 −1.115 0.287

3 Pose 2.895 1.253 1.487

4 Point 1.490 0.080
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FIGURE 10: Example 5: Under-constrained mixed synthesis for three
poses and one path points using additional motion constraint

TABLE 12: Example 5: Output dyad data

Dyad Fixed Pivot Moving Pivot Coupler Point

1 0.374,3.624 −0.296,2.725 −2.018,−1.391

2 −3.224,1.466 −4.027,3.045 −2.018,−1.391

3 −1.209,2.674 −2.044,1.878 −2.018,−1.391

7 Conclusion

In this paper, we have presented a generalized m pose, n path
mixed synthesis approach for four-bar mechanisms. Original
contributions of this paper include the closed form relationship
between coupler orientation and coupler path. Using this analytic
relationship as the core, a novel framework is proposed to solve
the mixed synthesis problem. Another novel feature is the use
of task-driven motion synthesis algorithm within the framework
to keep the computation cost at minimum and do simultaneous
type and dimensional synthesis. Many examples have been pre-
sented to display the usefulness of the model. This approach is a
step towards building a generalized synthesize algorithm which
unifies path, function and motion synthesis.
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