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ABSTRACT

This paper presents a geometric constraints driven approach
to unified kinematic simulation of n-bar planar and spherical
linkage mechanisms consisting of both revolute and prismatic
joints. Generalized constraint equations using point, line and
plane coordinates have been proposed which unify simulation
of planar and spherical linkages and are demonstrably scalable
to spatial mechanisms. As opposed to some of the existing ap-
proaches, which seek to derive loop-closure equations for each
type of mechanism separately, we have shown that the simulation
can be made simpler and more efficient by using unified version
of the geometric constraints on joints and links. This is facil-
itated using homogeneous coordinates and constraints on geo-
metric primitives, such as point, line, and plane. Furthermore,
the approach enables simpler programming, real-time compu-
tation, and ability to handle any type of planar and spherical
mechanism. This work facilitates creation of practical and intu-
itive design tools for mechanism designers.

Keywords: Kinematic analysis, n-bar simulation, prismatic
and revolute joints, indeterminate mechanism analysis, optimiza-
tion, planar mechanisms, spherical mechanisms, finite displace-
ment problem.

1 Introduction
Kinematic simulation of a mechanism is the calculation of

the position and orientation of all of its constituent links dur-
ing its entire range of motion. Simulation methodologies can be
broadly classified into three categories: graphical, analytical and
numerical [1]. The graphical analysis method is based on dyadic
decomposition, i.e., identification of four-bar loops in mecha-
nisms [2]. Although this approach is prominently used in simula-
tion packages like Linkages [3] and PMKS [4], its limitations are
well known [5]; e.g., they are unable to handle complex mech-
anisms like a double butterfly mechanism. Analytical methods
involve solving a loop closure constraint-based system of non-
linear equations [6]. Most analytical methods use the Polyno-
mial continuation method [7, 8], elimination method or Grobner
bases [9] to solve the simulation problem. Although, these meth-
ods are able to find all the possible assembly configurations of
a given mechanism, they are not general in nature. The motion
equations of each mechanism need to be derived manually on a
case by case basis.

On the other hand, numerical simulation methods can han-
dle extremely complex mechanism [10, 11]. They use iterative
numerical methods like the Newton-Rhapson method to solve the
system of non-linear equations for one solution only instead of all
possible ones [12]. These methods accept the mechanism joints
and link information as inputs. Subsequently, the algorithm re-
peatedly solves the finite displacement problem, i.e., the input
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FIGURE 1: Different types of mechanism representations

link is iteratively moved with finite displacement and conse-
quently, positions of remaining links are calculated. As a result,
the entire range of motion for the specified mechanism is cal-
culated. Hernández and Petuya have worked on a geometrical-
iterative method which performs better than Newton-Rhapson
method [13]. However, the approach is limited to n-bar planar
mechanism with revolute joints only. Radhakrishnan and Camp-
bell [14] have created a computational tool for planar mecha-
nism, which carries out position analysis of planar mechanisms
using a geometrically iterative algorithm. However, due to the
use of dyadic decomposition, it shares the limitations of graphi-
cal methods and is limited to the planar mechanisms.

Commercial CAD software like Autodesk Inventor, Solid-
works, ADAMS, etc. solve differential algebraic equations nu-
merically to provide multi-body simulation capability [15, 16,
17, 18]. However, their use is more prominent during detail
design stage rather than the conceptual design stage. Creation
of feature-based assembly of planar and spherical mechanisms
and initializing constraints on these systems is a nontrivial task.
Changing the type of joints or the number of links for a mech-
anism is also more involved than carrying out the same oper-
ation on a purely kinematic simulators like PMKS. Addition-
ally, their solvers model the motion problem as a set of cou-
pled differential and algebraic equations. This type of model is
more suited for dynamic simulations rather than kinematic sim-
ulations which involves purely algebraic constraints. Also, the
algebraic equations for commercial softwares are modeled us-
ing reference point representation which leads to more number
of constraints when compared to other representations. Thus,
use of these softwares for concept design is not ideal. SAM and
GIM are two more packages which supports n-bar simulation for
planar linkages with both revolute and prismatic joints [26, 27].
Furlong et al. [19] have demonstrated a virtual reality environ-
ment for simulating spherical four-bar mechanisms and in the
academic domain, SPHINX, ISIS and OSIRIS are softwares
which enable the analysis and synthesis of spherical mecha-
nisms [28,29,30,31].However, currently there are no approaches
which unify n-bar planar and spherical mechanism analysis and

can be demonstrated to simulate more complex linkage systems.
The proposed algorithm hopes to bridge this gap and augment
the capability of pure kinematic design systems like Motion-
Gen [32].

Selection of an apt mechanism representation and con-
straints is important as it has a profound effect on algorithm’s
simplicity and efficiency. Conventionally, a multi-body system
has been specified using multiple representations namely: rela-
tive coordinates, reference point coordinates, and natural coordi-
nates [10]. Relative coordinates are based on parameters speci-
fying one link relative to another; reference point coordinates are
based on specifying absolute position of each link independently;
while the natural coordinates are based on each link being spec-
ified by two points. Using reference point coordinates enables a
scalable representation while relative coordinates tend to be more
computationally efficient. Natural coordinates provide a com-
promise between the two approaches in terms of simplicity and
efficiency. Most commercial softwares use reference point coor-
dinate representation which usually leads to maximum number
of constraint equations and subsequently high computation time.

Figure 1 shows an RRPR (R: Revolute, P: Prismatic) four-
bar mechanism and its specification using different representa-
tions. For the relative coordinate representation, there are three
unknown coordinates i.e. ψ1,ψ2,L3. For the reference point co-
ordinate representation, the mechanism has nine unknown vari-
ables i.e. location and orientation of each link xi,yi,ψi. Similarly,
for the natural coordinate representation, there are six unknown
variables namely x1,y1,x2,y2,x3,y3. Since the four-bar mecha-
nisms are a single degree of freedom mechanisms, each of the
representation requires two, eight and five constraint equations,
respectively to fully define the motion. In this paper, we will
seek to derive unified constraint equations for all types of pla-
nar and spherical linkages consisting of both revolute and pris-
matic joints. We use homogeneous coordinates to write geomet-
ric constraints on points, lines, and planes. For example, our rep-
resentation for the shown RRPR mechanism will require using
six unknown point and line coordinates i.e. x1,y1,z1,a2,b2,c2.
Such a representation would keep the number of unknown vari-
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ables smaller while also enabling construction of simple geomet-
ric constraint equations.

In this paper, we propose a novel simulation approach where
planar-and spherical-mechanisms are represented as a collection
of geometric constraints spanned by points, lines, and planes.
The approach can handle any complex mechanism involving
both revolute and prismatic joints. It is scalable in nature and
can be used to analyze both spatial and spherical mechanism.
The geometric mechanism representation enables the design of
unified constraint equations which are easily programmed. As a
result, a simple generalized real-time framework for mechanism
simulation is achieved.

Our previous work on mechanism synthesis problems in-
cludes the creation of geometric constraint equations for four-bar
mechanisms with revolute or prismatic joints [20, 21, 22, 23, 24].
In [25], we have demonstrated an algebraic fitting based ap-
proach in the space of planar quaternions to simulate planar four-
bar linkages. However, that approach does not scale for more
complex planar or spherical linkages. In this paper, we show that
by using homogenous coordinates, we can derive unified geomet-
ric constraint equations for both planar and spherical linkages,
which simplifies the simulation without resorting to calculations
for individual types of mechanisms. The rigidity constraints im-
posed by the links are modeled as simple geometric constraints
using points, lines and planes. Once the mechanism is speci-
fied, the solver proceeds with iteratively perturbing the input and
solving the constraints for other links. To the best of authors’
knowledge, this work is the first attempt at using a point-line-
plane mechanism representation and presenting unified geomet-
ric constraints for simulation.

The major intellectual contributions of this paper can be
summarized as 1) presenting generalized constraint equations for
planar and spherical mechanisms using point-line-plane repre-
sentation and 2) enabling real-time simulation of n-bar planar or
spherical mechanisms.

Rest of the paper is organized as follows. Section 2 discusses
the representation and constraints required to describe the motion
of a general planar and spherical mechanism. Section 3 demon-
strates the algorithm required to simulate a mechanism using the
iterative numerical approach. Finally, in Section 4, we present a
few examples to demonstrate the use of proposed algorithm.

2 Mechanism representation and constraints
Planar mechanisms can be uniquely specified using their

joint and link data. A joint can be prismatic or revolute, which
naturally associates with points and lines, respectively. We use
homogeneous coordinates to represent both points and lines.
Thus, a point P is given by homogeneous coordinates (x,y,z)
whose affine coordinates are given as ( x

z ,
y
z ), while a line L is

also represented using homogeneous coordinates (a,b,c), where
equation of the line passing through the point P in the projective

plane is given by ax+by+ cz = 0 . Depending on the constraint
being expressed, this line can be fixed or floating in the plane.
A link can be represented by a subset of joints. The link can
be binary, ternary or n-ary depending on the number of joints it
contains. An example six-bar planar mechanism is displayed in
Fig. 2. Its joints are represented as points and lines while its links
are defined as a group of joints as shown in Table 1.

J1

J2

J3

J4

J6

J5

J7
J8

FIGURE 2: Planar Stephenson II six-bar linkage

TABLE 1: Joint and Link data for Stephenson II linkage using Affine
Coordinates

Joint Type Coordinates

J1,input Revolute 0, -1

J2 Revolute 1, .5

J3 Prismatic -0.17, 0.98, -4.28

J4 Revolute 3.25, 1.4

J5 Revolute 7.72, 1.44

J6 Revolute 11.66, 4.17

J7 Prismatic 0, 1, 1.24

J8 Coupler point 6, -2

Link Constituent joints

L1 J1,J2

L2 J2,J3,J4

L3 J3,J6

L4 J4,J5,J8

L5 J5,J6,J7

L6,ground J1,J7

Similarly, spherical mechanisms can also consist of revolute
and prismatic joints. A spherical prismatic joint constrains the
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link movement along a circular arc instead of a line. We rep-
resent a spherical revolute joint as a point P in terms of its ho-
mogeneous coordinates (x,y,z,w) with respect to the center of
the unit sphere such that its Affine coordinates are ( x

w ,
y
w ,

z
w ). A

spherical prismatic joint is defined as a plane Pl : (a,b,c,0) pass-
ing through the center of the sphere and is given by the equa-
tion ax+by+ cz = 0. The intersection of the plane and the unit
sphere defines the great circle along which the constituent links
are constrained to move for a spherical prismatic joint. Similar
to the lines for planar mechanisms, this plane can be fixed or
moving depending on the geometric constraint being expressed.
An example RRPR spherical mechanism is displayed in Fig. 3.
Its joints are represented as points and planes while its links are
defined as a group of joints as shown in Table 2.

J1

J2 J3

J4

J5

FIGURE 3: Spherical RRPR four-bar linkage

During the motion, a mechanism is subjected to a set of con-
straints imposed by the rigidity of its links. Thus, to simulate
a mechanism, these constraint equations need to be formulated.
For planar and spherical mechanisms, modeling three constraint
equations are sufficient for simulation. We propose a unique con-
straint equation for each of the binary links RR, RP, PR, and PP.
But, we will see that all of these constraints can be expressed in
a single equation. Any link with more than two joints can easily
be reduced to an equivalent collection of binary links. For exam-
ple, a ternary link can be treated as three binary links. Thus, these
constraints can successfully be used to enforce the rigidity of any
link in a general mechanism. Figure 4 and Fig. 5 show different
planar and spherical binary links, which are building blocks for
any planar and spherical mechanism. The RR link imposes the
constraint that the distance between two points remains constant;

TABLE 2: Joint and Link data for Spherical RRPR linkage using Affine
Coordinates; the coordinates are given wrt the fixed coordinate frame
located at the center of the reference sphere.

Joint Type Coordinates

J1,input Revolute 0.94, 0.24, 0.24

J2 Revolute 0.80, 0.27, 0.53

J3 Prismatic 0.68, -0.68, 0.26

J4 Revolute -0.38, 0.76, 0.53

J5 Coupler point 0.50, -0.21, 0.84

Link Constituent joints

L1 J1,J2

L2 J2,J3,J5

L3 J3,J4

L4,ground J1,J4

an RP or PR link imposes the constraint that the distance between
a point and a line (planar case) or a point and a plane (spherical
case) is constant; and for the PP link, the angle between two lines
(planar case) or two planes (spherical case) remains constant. RP
and PR links are inversions of each other and are expressed by
the same constraint. For planar/spherical cases, RP link has a
fixed point and a floating line/plane, while PR link has a fixed
line/plane and a floating point.

RR Link RP and PR Link PP Link

R1

R2

r

R

P

d

k

P1 P2

FIGURE 4: Types of binary planar links

The first general constraint enforces the rigidity of a spher-
ical binary link with two revolute joints represented by two ho-
mogenous point coordinates of the fixed point (a1,a2,a3,a4) and
floating point (b1,b2,b3,b4), where a4 and b4 are homogenizing
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FIGURE 5: Types of binary spherical links

factors. The constraint equation is given as

CS,RR : 2a1b1 +2a2b2 +2a3b3 +a0b4 = a4

(
b2

1 +b2
2 +b2

3
b4

)
,

(1)

where a0 is given as

a0 = a4r2−
a2

1 +a2
2 +a2

3
a4

. (2)

Here, r is the radius of the sphere formed by the RR link with
the center given by (a1,a2,a3,a4). When the z-coordinate is set
to zero, the constraint equation degenerates into the one for a
planar RR link. The constraint equation for a planar RR link
represented by points (a1,a2,a4) and (b1,b2,b4) is thus given as

CP,RR : 2a1b1 +2a2b2 +a0b4 = a4

(
b2

1 +b2
2

b4

)
, (3)

where a0 is given as

a0 = a4r2− a2
1 +a2

2
a4

. (4)

The second general constraint enforces the rigidity of a binary
link with one prismatic and one revolute joint represented by
a homogeneous point and a plane given by (a1,a2,a3,a4) and
(L1,L2,L3,L4), respectively. The general constraint equation for
a spherical RP link is given as

CRP : a1L1 +a2L2 +a3L3 +a4L4 = da4

√
L2

1 +L2
2 +L2

3, (5)

where d is the signed perpendicular distance between the revo-
lute joint and prismatic joint. For spherical linkages, the pris-
matic plane always passes through the origin, i.e. L4 = 0. Thus,

the spherical RP link constraint equation reduces to

CS,RP : a1L1 +a2L2 +a3L3 = da4

√
L2

1 +L2
2 +L2

3. (6)

When the z-coordinates is set to zero, the general constraint equa-
tion degenerates into a planar case. Thus, constraint equation for
a planar RP or PR link represented by a point (a1,a2,a4) and a
line (L1,L2,L4) is given as

CP,RP : a1L1 +a2L2 +a4L4 = da4

√
L2

1 +L2
2. (7)

When the perpendicular distance d becomes zero, the equation
describes a line passing through a point, i.e. constraint equation
of PR or RP links. This is usually the case with the PR links
where the moving joint point is constrained to be on the fixed
line of the prismatic joint and in case of the RP link where the
moving line is constrained to pass through the point of the fixed
joint.

Finally, the third constraint enforces the rigidity of a
spherical binary link with two prismatic joints represented as
(L1,L2,L3,0) and (M1,M2,M3,0). The constraint equation is
given as

CS,PP : L1M1 +L2M2 +L3M3 = k
√

L2
1 +L2

2 +L2
3

√
M2

1 +M2
2 +M2

3 ,

(8)

where k represents to the cosine of angle between two prismatic
joints. Similarly, for planar PP binary link represented by two
lines (L1,L2,L4) and (M1,M2,M4), the constraint equation de-
generates to

CP,PP : L1M1 +L2M2 = k
√

L2
1 +L2

2

√
M2

1 +M2
2 . (9)

When the two prismatic joints on a binary link are defined as two
parallel lines, a degree of freedom is added to the mechanism.
This situation is impractical and will not been considered further
in this paper.

It can be seen that the Eqs. 3, 6, 7, 8, 9 are all degenerate
case of the Eq. 1. In the projective plane for the planar geometric
constraints, the lines and points are dual to each other; thus, their
meanings can be interchanged without changing the underlying
structure of the equations. In the projective three-space for the
spherical constraints, the points and planes are dual to each other
and thus their meanings can be interchanged. Thus, the Eq. 1
is the single equation that unifies all the geometric constraints
associated with all types of links for both planar and spherical
mechanisms. This facilitates creation of the following metrics
for computation:
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1. Distance between two points in space;
2. Perpendicular distance between a point and a plane;
3. Angle between two planes

For links with prismatic joints, the line or plane coordinates
are homogenous in nature, i.e. multiplying a non-zero scalar λ

to prismatic coordinates (L1,L2,L3) does not change the coordi-
nates. Thus, the magnitude of this vector can be fixed to unity
without losing generality and another constraint can be written
as

CP : L2
1 +L2

2 +L2
3−1 = 0. (10)

For spherical mechanisms, an additional geometric constraint is
imposed on the joints due to the spherical nature of the motion.
It is assumed that all the revolute joints move on the unit sphere
which leads to the constraint

CS,R : a2
1 +a2

2 +a2
3−1 = 0, (11)

where (a1,a2,a3) are the coordinates of any revolute joint on a
spherical mechanism. Thus, the rigidity constraints described
in Eqs. (1), (3), (6), (7), (8), (9), (10) and (11) are sufficient to
uniquely determine the unknown coordinates of a n-bar planar
or spherical mechanism. This concludes our discussion on rep-
resentation and constraints for a generalized planar or spherical
mechanism.

3 Solving Constraint Equations
In this section, we discuss the algorithmic steps required to

solve the kinematic simulation problem. The general approach is
to iteratively perturb the input links by a finite displacement and
find the new position of the mechanism.

3.1 Input link perturbation
The simulation process involves iteratively perturbing the

input link by a finite displacement. Depending on the actuat-
ing joint being revolute or prismatic, the displacement could be
translation or rotational in nature. In this paper, we restrict our-
selves to consider actuation at the fixed joints. The relations gov-
erning the motion of input link are derived in this subsection.

For a perturbed RR link with the actuating fixed joint (x1,y1)
and moving joint (x2,y2), the new coordinates of moving revo-
lute joint can be given as

X2
Y2
1

= [T]−1[R][T]

x2
y2
1

 , (12)

where

[Rx] =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 ,and [T] =

1 0 −x1
0 1 −y1
0 0 1

 . (13)

In the above equation, (X2,Y2) represent the moving joint after
perturbation and θ is the angle through which the input link is
perturbed.

For a perturbed RP link with the actuating fixed joint (x1,y1)
and moving joint (a,b,c), the new coordinates of moving line
representing the prismatic joint can be given as

A
B
C

= ([T]−1[R][T])−T

a
b
c

 , (14)

where (A,B,C) are the moving line coordinates after perturba-
tion, and T and Rx are the translation and rotation matrices as
described in Eqs. (13).

For a planar mechanism with the actuation being at prismatic
joint, input link perturbation causes translation of other joints on
the input link. For a perturbed PR link with the actuating joint
(a,b,c) and moving joint (x,y), the new coordinates of translat-
ing revolute joint can be given as

X
Y
1

=


b√

a2+b2
d

−a√
a2+b2

d

0

+
x

y
1

 , (15)

where (X ,Y ) are the moving joint coordinates after perturbation
and d is the distance through which the prismatic joint is moved
along the fixed line. It can be seen that in Eq. (15) the actuating
line coordinate c doesn’t effect the new position of moving joint
coordinates as new position only depends on direction cosines.

For a perturbed PP link with the actuating fixed joint
(a1,b1,c1) and moving joint (a2,b2,c2), the new coordinates of
translating prismatic joint can be given as

A2
B2
C2

=

 0
0

a1b2−a2b1√
a2

1+b2
1

d

+
a2

b2
c2

 (16)

where (A2,B2,C2) are the moving prismatic joint coordinates af-
ter perturbation and d is the distance through which the input link
has been perturbed.

Similarly, relationships determining the values of perturbed
joints for spherical mechanisms can also be calculated. For
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spherical mechanisms with a fixed revolute actuating joint, the
moving joints rotate around the axis passing through the actua-
tion joint and the centre of sphere. The transformation matrix
which rotates spherical link around an axis passing through the
centre of sphere (0,0,0) and an arbitrary point on surface of the
sphere (l,m,n) is given by

[R](l,m,n) = [Rx]
−1[Ry]

−1[Rz][Ry][Rx] (17)

[Rx] =

1 0 0
0 n√

m2+n2
−m√
m2+n2

0 m√
m2+n2

n√
m2+n2

 (18)

[Ry] =

√m2 +n2 0 −l
0 1 0
l 0

√
m2 +n2

 (19)

[Rz] =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (20)

where Rx, Ry, Rz are the rotation matrix around x,y and z axis
and θ is the angle by which the link is rotated around the axis.

Using Eq. (17), the new coordinates of the moving joints of
a perturbed spherical RR link can be given as

X2
Y2
Z2

= [R](x1,y1,z1)

x2
y2
z2

 (21)

where (x1,y1,z1) are the fixed joint coordinates, (x2,y2,z2) are
the moving joint coordinates before perturbation and (X2,Y2,Z2)
are the moving joint coordinates after perturbation.

For a spherical RP link with a fixed revolute joint, the coor-
dinates of moving prismatic joint can be given as

A
B
C

= [R](x,y,z)

a
b
c

 (22)

where (x,y,z) are the fixed joint coordinates, (a,b,c) are the
moving joint coordinates before perturbation, (A,B,C) are the
moving joint coordinates after perturbation, and as described
above.

When the actuation joint is prismatic in nature, the moving
joints translate on the intersection of a parallel plane and the unit
sphere. This motion can also be characterized as rotation around
an axis which passes through the centre of the sphere and ’pole’
of the prismatic joint. The poles of a great circle are defined as
intersection of two circles perpendicular to the initial circle. If

a spherical prismatic joint is defined as a plane (a,b,c), its pole
coordinates are also given as (a,b,c). Thus, for a spherical RP
link with fixed prismatic joint, the coordinates of moving revo-
lute joint can be given as rotation i.e.X

Y
Z

= [R](a,b,c)

x
y
z

 (23)

where (a,b,c) are the fixed prismatic joint coordinates, (x,y,z)
are the moving revolute joint coordinates before perturbation and
(X ,Y,Z) are the moving revolute joint coordinates after perturba-
tion.

For a spherical PP link with a fixed prismatic joint, the co-
ordinates of a moving prismatic joint can be given asA2

B2
C2

= [R](a1,b1,c1)

a2
b2
c2

 (24)

where (a1,b1,c1) are the coordinates of fixed prismatic joint,
(a2,b2,c2) are moving prismatic joint coordinates before pertur-
bation and (A2,B2,C2) are moving prismatic joint coordinates
after perturbation.

With these expressions, we can successfully calculate the lo-
cation of input link after imparting it a discrete perturbation. The
next step is to find the coordinates of all the other unknown joint
coordinates which are compatible with the rigidity constraints
imposed on the mechanism during simulation.

3.2 Numerical nonlinear system of equation solving
For any multi-body system, the position problem is always

based on solving a system of constraint equations. This set of
equations can be represented as

ΦΦΦ(q) = 0 (25)

where q is the state vector which consists of all the unknown
coordinates. The well-known Newton-Rhapson method can be
used to solve this nonlinear system of equation. It is featured by
quadratic convergence in the neighborhood of the solution. Since
the input link is perturbed by a small finite displacement, the pre-
vious state of mechanism serves as a good initial approximation.
The number of constraint equations should be equal to or greater
than the number of unknowns for this approach to work. For pla-
nar and spherical mechanisms, it is always possible to satisfy this
criterion using the constraints outlined in section.

The iterative algorithm followed can be defined as

qi+1 = qi− [JJJ−1(qi)]ΦΦΦ(qi) (26)
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where qi is the state vector at ith iteration, ΦΦΦ(qi) is the vector of
residuals at q= qi, and [JJJ−1(qi)] is the inverse of Jacobian matrix
evaluated at q = qi. The Jacobian matrix is of the following form

[JJJ(q)] =


∂φ1
∂q1

∂φ1
∂q2
· · · ∂φ1

∂qn
∂φ2
∂q1

∂φ2
∂q2
· · · ∂φ2

∂qn
· · · · · · · · · · · ·
∂φm
∂q1

∂φm
∂q2
· · · ∂φm

∂qn

 (27)

where m is the number of constraints and n is the number of
unknown coordinates. Thus to calculate the Jacobian matrix, re-
lations describing the first order partial derivatives of constraint
equations are required.

The first order partial derivatives for spherical RR constraint
given in Eq. (1) can be given as follows

∂CRR

∂a1
= 2(a1−b1) (28)

∂CRR

∂a2
= 2(a2−b2) (29)

∂CRR

∂a3
= 2(a3−b3) (30)

Here, the homogenous point coordinate a0 and b4 has been as-
sumed as unity without loss in generality. For planar RR link,
only ∂CRR

∂a1
and ∂CRR

∂a2
exists.

The first order partial derivatives for spherical RP constraint
given in Eq. (6) can be given as follows

∂CS,RP

∂a1
= L1,

∂CS,RP

∂a2
= L2,

∂CS,RP

∂a3
= L3 (31)

∂CS,RP

∂L1
= a1−

dL1√
L2

1 +L2
2 +L2

3

(32)

∂CS,RP

∂L2
= a2−

dL2√
L2

1 +L2
2 +L2

3

(33)

∂CS,RP

∂L3
= a3−

dL3√
L2

1 +L2
2 +L2

3

(34)

Here, the homogenous point coordinate a0 has been assumed as
unity without loss in generality. For planar RR link, ∂CP,RP

∂a1
and

∂CP,RP
∂a2

are same, ∂CP,RP
∂a3

doesn’t exist, ∂CP,RP
∂L1

and ∂CP,RP
∂L1

have L3 =

0 and ∂CP,RP
∂L4

= 1
The first order partial derivatives for spherical PP constraint

given in Eq. (8) can be given as follows

∂CS,PP

∂L1
= M1−

kL1

√
M2

1 +M2
2 +M2

3

L2
1 +L2

2 +L2
3

(35)

∂CS,PP

∂L2
= M2−

kL2

√
M2

1 +M2
2 +M2

3

L2
1 +L2

2 +L2
3

(36)

∂CS,PP

∂L3
= M3−

kL3

√
M2

1 +M2
2 +M2

3

L2
1 +L2

2 +L2
3

(37)

These equations degenerate to planar case when L3 = 0 and M3 =

0 and ∂CP,PP
∂L4

= 0
The first order partial derivatives for homogenous Prismatic

joint constraint given in Eq. (10) can be given as follows

∂CP

∂a
= 2a,

∂CP

∂b
= 2b,

∂CP

∂c
= 2c (38)

The first order partial derivatives for unit circle Revolute
joint constraint given in Eq. (11) can be given as follows

∂CS,R

∂x
= 2x,

∂CS,R

∂y
= 2y,

∂CS,R

∂ z
= 2z (39)

To automate the calculation of residual vector ΦΦΦ(qi) and the
Jacobian matrix [JJJ(qi)], the constraints are handled in a sequen-
tial manner. While creating the residual vector in our imple-
mentation, first the rigidity constraints for each link are calcu-
lated and then the constraints for joints are calculated. Simi-
larly, the Jacobian matrix is created in a column-first manner i.e.
all the partial differential equations with respect to an unknown
state variable are calculated before progressing to the next vari-
able. The outlined method is just one way of calculating ΦΦΦ(qi)
and [JJJ(qi)] since their values are independent of the sequence
adopted to calculate each element.

Thus, using the constraint equations and their first order par-
tial derivatives, it is possible to solve iteratively for the solution
using Newton-Rhapson method. The iterations are continued un-
til a solution within desired accuracy is calculated.

For some input link perturbations, the Newton-Rhapson
method might fail to converge even after many iterations. In
these instances, there does not exist a mechanism state which
fulfills all the constraint equations. As a result, this input pertur-
bation is outside the possible limits of motion of mechanism.

Thus, by iteratively perturbing the input link and solving
the constraints for other joint coordinates, we are able to simu-
late any general planar or spherical mechanism. Numerous tech-
niques exist that can improve the convergence and efficiency of
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the Newton-Rhapson method. However, the basic method suf-
fices to achieve real-time simulation. The complete algorithm
has been described in Algo 1.

Algorithm 1: Algorithm for planar and spherical
mechanism simulation

Input: Initial mechanism configuration
1 Calculate initial rigidity metric for each link
2 for range of input link motion do
3 Perturb input link
4 for max iterations do
5 Calculate the constraint residual
6 if residual ≤ ε then
7 Solution found
8 break
9 end

10 Calculate the Jacobian matrix
11 Calculate predicted unknown joint coordinates
12 end
13 if solution found then
14 Store as subsequent mechanism state
15 else
16 Motion limit reached
17 end
18 Animate the range of motion

Output: Mechanism simulation

4 Examples
This section presents sample examples to demonstrate the

use of proposed algorithm for mechanism simulation. The sim-
ulation has been carried out in MATLAB on a PC running Core
i5-7300 at 2.6GHz with 8gb RAM. The simulation is carried out
within seconds for residual value of 1.0e− 8. Each closed-loop
output curve is made up of 180 points while open-loop curves
have less than 180. Each point corresponds to 2π

180 radians or
units input perturbations.

4.1 Speed comparison with a commercial software
To compare the speed of commercially available CAD sys-

tems and proposed algorithm, a planar four-bar crank rocker
mechanism with revolute joints is modeled and simulated. Au-
todesk Inventor 2020 with educational license is used as ref-
erence commercial CAD system. The model which is run on
both systems is displayed in Fig 6. Simulation is performed for
180 timesteps with one degree input link perturbation for each
timestep. The simulation takes 5s to complete Inventor while it

finishes in 1.4s when the proposed algorithm is used. Thus, even
for a simple mechanism, there is a significant speed difference
between the commercial solvers and proposed methodology.

(a) Autodesk Inventor (b) Proposed algorithm

FIGURE 6: Speed comparison for a planar crank rocker mechanism

4.2 Planar Stephenson-II linkage
A planar Stephenson-II six-bar linkage is simulated in this

example. This linkage does not have a four-bar linkage and
proves to be challenging to simulate using dyadic decomposition
based approaches. However, our approach handles these non-
dyadic mechanisms without issues.

The six-bar mechanism is displayed in Fig. 2 and its joint
and link data is given in Table 1. The mechanism has J1,J7 as the
fixed joints, J2 as the perturbed joint and J3,J4,J5,J6,J8 as the
unknown joints defining the 11-dimensional state vector. The
mechanism consists of ten rigidity constraint equations and one
homogeneous coordinate equation for prismatic joint. The sim-
ulation algorithm successfully solves these constraints and plots
the trajectory of the coupler point J8 as shown in Fig. 2. The
run-time of this simulation was 3.79s.

4.3 Planar Modified Theo Jansen linkage
In this example, a planar modified Theo Jansen linkage with

one of its revolute joints replaced by a floating prismatic joints is
simulated. The eight-bar mechanism is displayed in Fig. 7 and
its joint and link data is given in Table 3. J1,J5 are the fixed
joints, J2 is the perturbed joint and the state vector consists coor-
dinates of J3,J4,J6,J7,J8. This results in a 11-dimensional state
vector. Ten rigidity constraint equations for links and one ho-
mogeneous coordinate equation for prismatic joint are available
for this mechanism. The simulation algorithm plots the trajec-
tory of the coupler point J8 as shown in Fig. 7. Note, the length
of stride for this modified mechanism is larger than that of the
conventional Theo Jansen mechanism which has revolute joints
only. As a result, this mechanism is a prospective candidate for
walking robots. The run-time of this simulation was 3.81s.
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J1

J2

J3

J4

J5

J6

J7

J8

FIGURE 7: Planar modified Theo Jansen with floating prismatic joint

TABLE 3: Joint and Link data for Modified Theo Jansen linkage

Joint Coordinates

J1,input 2.77, 2.31

J2 2.17, 3.33

J3 -0.50, 0.87, -4.80

J4 .66, -1.3

J5 -.22, 1.72

J6 -3.17, .66

J7 -2.08, -2.24

J8 2.54, -4.64

Link Constituent joints

L1 J1,J2

L2 J2,J3

L3 J2,J4

L4 J3,J5,J6

L5 J5,J4

L6 J6,J7

L7 J4,J7,J8

L8,ground J1,J5

4.4 Spherical RRPR mechanism
This example presents the simulation of a spherical RRPR

mechanism which is the spherical analog of the Whitworth
quick-return mechanism. The four-bar mechanism is displayed
in Fig. 3 and it’s joint and link data is given in Table 2. The mech-
anism has J1,J4 as the fixed joints, J2 as the perturbed joint and
J3,J5 as the unknown joints defining the 6-dimensional state vec-
tor. The mechanism consists of four rigidity constraint equations,
one unit sphere equation for revolute joint and one homogeneous
coordinate equation for prismatic joint. Once the simulation is
completed, the trajectory of coupler point J5 can be plotted as
shown in Fig. 3. The run-time of this simulation was 1.49s.

4.5 Spherical Watt-I linkage
In this example, a spherical Watt-I six-bar linkage with pris-

matic input joint is simulated. Spherical Watt I type linkages
have been used to design door hinges for spatial movement. The
six-bar mechanism is shown in Fig. 8 and its link and joint data is
given in Table 4. From the data, its known that J1,J6 are the fixed

joints, J2,J3 are the perturbed joints and J4,J5,J7,J8 are the un-
known joints representing the 12-dimensional state vector. The
mechanism can be described using eight rigidity constraints for
links and four unit circle constraints. Perturbing the input link
along the input prismatic joint results in the motion of coupler
point J8 as shown in Fig. 8. The run-time of this simulation was
3.33s.

J1

J2

J3

J4

J5

J6

J7

J8

FIGURE 8: Spherical Watt I six-bar linkage

TABLE 4: Joint and Link data for Spherical RRPR linkage

Joint Coordinates

J1,input 0, 0, 1

J2 0.93, 0, 0.37

J3 0.85, -0.17, 0.51

J4 0.70, 0.70, 0.14

J5 0.73, 0.49, 0.49

J6 0.81, 0.41, -0.41

J7 0.48, -0.10, 0.87

J8 0.49, 0.49, 0.73

Link Constituent joints

L1 J1,J2,J3

L2 J2,J4,J5

L3 J4,J6

L4 J3,J7

L5 J5,J7,J8

L6,ground J1,J6

5 Conclusion
In this paper, we have presented unified equations for motion

simulation of planar and spherical n−bar mechanisms and an ef-
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ficient algorithm for computation to enable real-time, interactive
simulation. The approach is general and uses simple geometric
primitives, such as point, line and planes to used to represent the
constraints inherent in mechanisms.
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