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ABSTRACT
The synthesis of spatial mechanisms for defect-free path

generation has not received a lot of attention. In this paper,
we focus on the synthesis of 5-SS mechanisms and use a ma-
chine learning based approach. First, we create a coupler path
database using a solver based on the iterative Newton-Raphson
optimization algorithm. Subsequently, a data cleanup, nor-
malization, balancing, and augmentation pipeline is established
based on intrinsic properties of space curves namely curvature
and torsion. Finally, we use an unsupervised learning algorithm
based on Variational Autoencoder combined with K-means clus-
tering to find a multiplicity of defect-free 5-SS mechanisms and
examples are presented.

1. INTRODUCTION
Path synthesis problem is the determination of the dimen-

sions of a kinematic mechanism to guide one of its links through
many specified points [1, 2]. Extensive research has been
done to solve the path generation problem for planer mecha-
nisms. Analytical methods for synthesis include algebraic meth-
ods [3, 4, 5, 6], complex number methods [7] and displacement
matrix methods [8]. Optimization-based techniques attempt to
minimize an objective function and find mechanisms, which best
approximate a curve [9,10,11,12,13,14]. Atlas-based approaches
explore the use of curve invariants like Fourier descriptors to in-
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telligently form and search a database of coupler curves [15,16].

A substantial literature on the synthesis of Spherical mech-
anisms is also available [17, 18, 19]. However, exploring the
path synthesis problem for spatial one degree-of-freedom mech-
anisms has been relatively limited. Premkumar et al. have pro-
posed an optimization based solution for the synthesis of the
RRSC and RRSS spatial mechanisms [20, 21]. Ananthasuresh
and Kramer solve the synthesis of the RSCR spatial mechanism
using the Generalized Reduced Gradient method of optimiza-
tion [22]. Jiménez et al. outline a generalized constraint based
optimization technique [23]. Sun et al. use an atlas-based ap-
proach which uses the Fourier series to compare curves and syn-
thesize RCCC spatial mechanism [24]. In this paper, we focus
on the path synthesis of spatial 5-SS mechanisms that haven’t
been explored before. A 5-SS mechanism has been displayed in
Fig. 1.

As can be observed in the figure, spatial 5-SS mechanism
coupler paths tend to have multiple branches and circuits. We
can see two circuits and each circuit has many branches separated
by singularity points. Chase and Mirth discuss in great detail the
challenges faced in synthesizing practical one degree-of-freedom
mechanisms due to circuit and branch defects [25]. Roth and
Freudenstein have discussed the occurrence of defects in mecha-
nism synthesis for path generation using numerical methods [26].
Wampler et al. show that there exist many defective mechanisms
for the nine-point path synthesis problem [27]. These defects
tend to be more prominent in spatial mechanisms when com-
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FIGURE 1: Sample 5-SS mechanism

pared to planar mechanisms. Thus, to synthesize practical spatial
mechanisms, we consider path synthesis for defect-free mecha-
nisms.

In this paper, we use unsupervised machine learning algo-
rithms to synthesize mechanisms. First, the relevant data is gen-
erated using Newton-Raphson based kinematic solver. Then the
data is normalized, pruned, and augmented using intrinsic space
curve properties like curvature and torsion. After that, we use
Variational Autoencoder to generate multiple plausible trajec-
tory signatures that fall in the family of defect-free 5SS coupler
curves. These signatures are finally looked up in a hierarchical
database created using the K-means clustering algorithm.

Rest of the paper is organized as follows: Section 2 presents
the numerical approach to generate 5-SS coupler curves; Section
3 discusses the methodology devised to improve data quality;
Section 4 uses unsupervised machine learning tools to calculate
multiple solution mechanisms and finally, Section 5 shows two
examples solving the path synthesis problem.

2. DATA GENERATION
For a machine learning based approach to work, a large

amount of data is required. In this paper, this data would in-
clude 5-SS mechanisms with their coupler point trajectory. This
is achieved by creating a Newton-Raphson method based solver
which uses the general constraint equations proposed in our pre-
vious work [28] given in Eq. (1).

During a spatial motion, a 5-SS spatial mechanism is sub-
jected to a set of constraints imposed by the rigidity of its links.
The general constraint enforces the rigidity of a binary link with
two spherical joints represented by two homogeneous point co-

ordinates of the fixed point (a1,a2,a3,a4) and floating point
(c1,c2,c3,c4), where a4 and c4 are homogenizing factors. The
constraint equation is given as

CSS : 2a1c1 +2a2c2 +2a3c3 +a0c4 = a4

(
c2

1 + c2
2 + c2

3
c4

)
, (1)

where a0 is given as

a0 = a4r2−
a2

1 +a2
2 +a2

3
a4

. (2)

Here, r is the radius of the sphere formed by the SS link with the
center given by (a1,a2,a3,a4).

A spatial 5-SS mechanism is subjected to seventeen inde-
pendent rigidity constraints. These include the five constraints
for the SS-dyads and twelve constraints for the coupler link. Dur-
ing a simulation, there exist eighteen unknown parameters and
fifteen known parameters. The (x,y,z) coordinates of the five
fixed pivots are the known parameters while the (x,y,z) of the
five moving pivots and the coupler point are the unknowns. This
results in one degree of freedom motion.

To actuate the 5-SS mechanism, a linear actuator placed
between the fixed pivot of the first dyad and moving pivot of
the second dyad. Liao and McCarthy also use the same ac-
tuation scheme in their paper on seven pose synthesis of 5-SS
linkages [29]. The length of the actuator imposes an additional
constraint on the motion and can be defined using Eq (1) as a
spherical constraint with a changing radius. Now, to simulate
the mechanism, the input actuator is iteratively perturbed by a fi-
nite displacement and the new position of the mechanism is cal-
culated until the algorithm fails to converge. Newton-Raphson
algorithm fails to converge at singular configurations and these
configurations occur at the extreme of each defect-free trajectory
where circuit defect occurs.

For a 5-SS mechanism, a system of eighteen unknowns and
eighteen constraint equations can be formed and is represented
as

ΦΦΦ(q) = 0 (3)

where q is the state vector that consists of the unknown coor-
dinates. The well-known Newton-Raphson method can be used
to solve this nonlinear system of equations and get a unique so-
lution. Since the linear actuator is perturbed by a small finite
displacement, the previous state of mechanism serves as a good
initial approximation.

The iterative simulation algorithm followed can be defined
as

qi+1 = qi− [JJJ−1(qi)]ΦΦΦ(qi) (4)
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where qi is the state vector at ith iteration, ΦΦΦ(qi) is the vector of
residuals at q= qi, and [JJJ−1(qi)] is the inverse of Jacobian matrix
evaluated at q = qi. The Jacobian matrix is of the following form

[JJJ(q)] =


∂φ1
∂q1

∂φ1
∂q2
· · · ∂φ1

∂q16
∂φ2
∂q1

∂φ2
∂q2
· · · ∂φ2

∂q16
· · · · · · · · · · · ·
∂φ16
∂q1

∂φ16
∂q2
· · · ∂φ16

∂q16

 . (5)

To calculate the Jacobian matrix, relations describing the first
order partial derivatives of constraint equations are required. For
an SS dyad described in Eq (1), the first order partial derivatives
can be given as follows

∂CSS

∂a1
= 2(a1− c1) (6)

∂CSS

∂a2
= 2(a2− c2) (7)

∂CSS

∂a3
= 2(a3− c3) (8)

Here, the homogeneous point coordinate a4 and c4 has been as-
sumed as unity without loss in generality.

Thus, by iteratively perturbing the input actuator and solv-
ing the constraints for other moving pivot coordinates, we can
simulate a 5-SS mechanism and extract the path traced by cou-
pler point. There does exist an accuracy-storage trade-off for the
simulation process. The accuracy of the path increases with de-
crease perturbation magnitude. However, this results in sampling
more points on the path and thus needs more storage.

For this paper, we generated a data set of 7,500 defect-free
coupler paths using arbitrarily selected 5-SS mechanisms. Fig. 2
shows one of the simulated mechanisms. This database repre-
sents a family of paths a general 5-SS mechanism can achieve.
In the next section, we discuss the methodology used to refine
this data set for machine learning purposes.

3. DATA PREPROCESSING
Before the generated data can be used for machine learning,

the data needs to be normalized, cleaned and augmented.

3.1 Normalizing the number of constituent points in
each path

A spatial coupler curve is defined as an array of n 3-D data
points. In the data set of 7,500 path curves, we observe that n
ranges from 2 to 3,126 as can be seen in Fig. 3. Since curves
with a very low number of data points do not capture its geometry
well, we choose to ignore them. Thus, curves made of less than

FIGURE 2: A 5-SS mechanism simulation where black triangles are
the fixed pivots, blue solid lines are the SS dyads, green lines are the
floating coupler link, red curve is the coupler path, and dotted blue line
is the linear actuator.

ten data points are removed resulting in a data set of 7,408 curves.

FIGURE 3: Histogram showing number of data points in each path
curve included in database

The remaining curves are fitted with a fourth-order B-spline
interpolation curve. Then, 100 data points are uniformly sam-
pled on each curve leading to an arc-length based parametriza-
tion. The benefit of using this arc-length parametrization is
that it allows a unique coupler curve representation which is
time-invariant. This property is desirable since it makes com-
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paring two curves with a similar trajectory but different time
parametrization much easier as has been demonstrated in Fig. 4.

FIGURE 4: Curve 1 and Curve 2 represents the same geometric curve
with different time parametrization. They share the same unique arc
length parametrization as shown in Curve 3

3.2 Normalizing the location, orientation, and scale of
paths

Creating a curve representation which is translation, rotation
and scaling invariant is desirable. First, the mean (x̄, ȳ, z̄) of the
curve is calculated and it is translated to origin. Next, the prin-
cipal axes of the curve are rotated to align with x,y,z axes. The
principal component axes are the eigenvectors of the covariance
matrix of the point cloud that defines the curve. Also, the curves
are scaled to unit arc-length. The effect of normalization on a
sample path curve has been demonstrated in Fig. 5.

FIGURE 5: Before and after normalizing a path curve

3.3 Incorrect Path Cleanup
When the solver is simulating a 5SS-mechanism, it may

jump from one branch to another due to inherent limitations of
numerical methods. Due to the discontinuity at points where
branch jump happens, the invalid coupler paths have extremely
high curvature or torsion. For a spatial curve, Curvature is a

scalar measurement of the magnitude of the bending of the curve
within the osculating plane at a point as the point moves along
the curve. Torsion is a scalar measurement of the amount that
the curve bends out of the osculating plane at a point as the point
moves along the curve. The curvature and torsion can be calcu-
lated as follows

κ =
||r′(t)× r′′(t)||
||r′(t)||3

, (9)

τ =
(r′(t)× r′′(t)) · r′′′(t)
||r′(t)× r′′(t)||2

, (10)

where r(t) is the curve.
To isolate the incorrect paths, the Z-score metric, also called

the standard score is used. A Z-score indicates how many stan-
dard deviations an element is from the mean and is given as

z =
X−µ

σ
(11)

where µ is the mean and σ is the standard deviation. We cal-
culate three Z-score of maximum curvature (Zκ,max), maximum
torsion (Zτ,max) and minimum torsion (Zτ,min). In our study, an
outlier is defined as any curve having Zκ,max > 1.5 or Zτ,max > 3
or Zτ,min < −3. An example of an outlier has been shown in
Fig. 6. Filtering out the outliers results in a clean database con-
taining 7,200 coupler paths.

FIGURE 6: An outlier path curve with high curvature. The branch
jump occurs at the red dot denoted on curve

3.4 Coupler path diversity balancing
The database in its present form is unbalanced i.e. it has

more samples of coupler paths which are more probable while
lesser samples of other more diverse examples. This leads to
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the algorithm not learning well since it comes across the more
probable examples most of the time. To overcome this bias, a
limited number of diverse paths are selected from the complete
database by under sampling similar curves.

According to the fundamental theorem of space curves in
differential geometry, every regular curve in three-dimensional
space, with non-zero curvature, has its shape completely deter-
mined by its curvature and torsion. Thus, a good metric to com-
pare the similarity of two curves are these Curvature–Torsion De-
scriptors. The curvature is always positive while the torsion can
be negative. We define the similarity score (δ ) as a weighted
sum of P2 norms of difference between curvature and torsion of
two curves which is given as

δ =
||κ2(s)−κ1(s)||2 +w||τ2(s)− τ1(s)||2

n
(12)

where w is the weight and n is the total number of constituent
points in each curve. Since the numerical calculation of torsion
can end up being somewhat inaccurate, we set the weight at w =
.1 in this paper. We select the similarity metric threshold such
that if δ < .065, the two curves are similar and one of them is
dropped from the database. It can be observed in Fig. 7 that
some curves occur up to 170 times in the database. On further
exploring, we find that the common curves represent simple arcs
and line trajectories and their reflections as seen in Fig. 8. Under-
sampling similar curves lead to a balanced data set containing
5,021 coupler paths.

FIGURE 7: Bar graph showing the number of similar curves found for
each curve.

3.5 Adding mirrored paths
In kinematics, it is known that if a path is a valid coupler

path, its mirrored curve is also a valid path. For the machine
learning algorithm to gain this domain knowledge, coupler paths

FIGURE 8: Most common variety of curves in the database

mirrored across xy,yz and zx planes are added to the database.
Thus, this step to encourage the model to be invariant to mirror
operations. After this step, our database contains 20,084 curves.

3.6 Adding noise to paths
Finally, some Gaussian noise is added to all the curves. This

acts as a regularizer to the machine learning algorithm, encour-
ages robust learning, and avoids overfitting.

4. MACHINE LEARNING BASED PATH SYNTHESIS
Now that the database has been normalized, cleaned, and

augmented, it can be used to train a machine learning model.

4.1 Training using Variational Autoencoder
The goal of our machine learning model is to learn the dis-

tribution behind the family of defect-free 5-SS coupler curves. It
should be able to generate multiple plausible trajectories that fall
in this family and is similar to the user-inputted path. Also, it
should provide a low dimensional signature to the coupler path
which can easily be compared to other curves as a similarity met-
ric.

To achieve this, we use a Variational Autoencoder (VAE)
which is a type of generative neural network. It trains on cou-
pler path (Xpath) and approximates the underlying distribution
of observed data. As can be seen in Fig. 9, it uses the encoder
model to find the latent distributions defined as a multivariate
Gaussian distribution defined by mean vector µ and standard de-
viation vector σ . A latent vector z can then be sampled from this
distribution and used to generate similar path trajectories using
the decoder model. The encoder is represented as qθ (z|X) where
θ are the encoder weights and biases while a decoder is repre-
sented as pφ (X |z) where φ denotes decoder weights and biases.
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FIGURE 9: Architecture of a Variational Autoencoder

The loss function used to train the VAE is defined as sum of
reconstruction loss and KL divergence which is given as

Loss = RL+KL (13)

RL =

√
n

∑
i=1

d2
i (14)

di =
√

(x̂i− xi)2 +(ŷi− yi)2 +(ẑi− zi)2 (15)

KL =
k

∑
i=1

σ
2
i ‘+µ

2
i − log(σi)−1 (16)

where the latent space is k dimensional, each path consists of n
points and the reconstruction loss is the Eucledian norm.

Multiple VAEs with different depths and bottlenecks were
tested to find the best architecture. The capacity of a network
increases with increasing depths and it can describe a much
more complex function. However, due to the problem of van-
ishing gradient, deep networks tend to be harder to train. Thus,
there exists an optimal depth that balances complexity and train-
ability. Similarly, the narrower the bottleneck layer, the better
is the dimensionality reduction. However, reducing the width
too much can lead to loss of excessive information. Networks
with depth=(1,2,3,4) and bottleneck layer width=(15,30,60) were
tested and the results are given in Table 1. Each VAE is trained
for 3000 epochs with a batch size of 256 using Adam (adaptive
moment estimation) optimizer.

We notice that VAE-FC-H3-Z30 performs the best. It con-
tains three hidden fully-connected layers consisting of 200, 100
and 60 nodes each, ReLU activation function after each layer and
the bottleneck layer z contains 30 nodes. The training curves of
VAE-FC-H3-Z30 can be seen in Fig. 10.

The image processing community has successfully used
convolution layers for feature extraction to enhance the perfor-
mance of image classification algorithms [30]. One of the rea-
sons for this success is that the convolution layers conserve the
locality of information while the fully connected layers lose this
spatial information. Another advantage of a convolution layer is
weight sharing which leads to reduced memory requirements.

FIGURE 10: Training losses for the fully connected VAE

For spatial curves, the local geometry of a curve segment
is heavily dependent on previous and next curve segments due
to the continuity constraints. This is especially true in the
case of interpolation curves like B-splines where each control
point has local effect [31]. Since using convolution layers make
sense, they are augmented to the VAE-FC-H3-Z30 model archi-
tecture and their effectiveness is empirically tested. The VAE-
COV-H8-Z30 has five 1D-convolution layers followed by three
fully connected layers. Each convolution layer has a kernel=2,
stride=2 and filters=(5,10,15,20,25). The fully connected layer
size is (200,100,60) and the bottleneck layer size is 30. 1d-
deconvolution is used for the decoder. The learning curves for
this model are shown in Fig. 11. We find that this model performs
even better and has a training loss of 9.9034 and a validation loss
of 10.0311.

FIGURE 11: Training losses for the Convolutional VAE

Some sample outputs generated using VAE-COV-H8-Z30
are shown in Fig 12 where an input curve (red) generates five
trajectories (gray) sampled from the underlying distribution.
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TABLE 1: VAE model architectures that were tested and their performances

Name Encoder Arch. Latent (z) dim. Decoder Arch. Training loss Validation loss

VAE-FC-H1-Z15 (100) 15 (100) 10.5323 10.5466

VAE-FC-H1-Z30 (100) 30 (100) 10.8516 10.8248

VAE-FC-H1-Z60 (100) 60 (100) 10.8739 10.8573

VAE-FC-H2-Z15 (150,75) 15 (75,150) 10.2167 10.2773

VAE-FC-H2-Z30 (150,75) 30 (75,150) 10.2189 10.2589

VAE-FC-H2-Z60 (150,75) 60 (75,150) 10.2577 10.2853

VAE-FC-H3-Z15 (200,100,60) 15 (60,100,200) 10.0575 10.0999

VAE-FC-H3-Z30 (200,100,60) 30 (60,100,200) 9.9742 10.0760

VAE-FC-H3-Z60 (200,100,60) 60 (60,100,200) 10.0260 10.0821

VAE-FC-H4-Z15 (200,150,100,60) 15 (60,100,150,200) 10.0175 10.1155

VAE-FC-H4-Z30 (200,150,100,60) 30 (60,100,150,200) 10.1348 10.1911

VAE-FC-H4-Z60 (200,150,100,60) 60 (60,100,150,200) 10.2031 10.2924

FIGURE 12: Comparing X (red curve) and X̂ (grey curves)

4.2 Creating a Hierarchical Database
Once the training is completed, the recognition model is

used to generate signatures of coupler curves in the database de-
noted by the µ vector. Then, these signatures are clustered into
500 groups using K-Means Clustering. The distance metric used
is the Euclidean distance. As a result, we get 500 cluster centers
subdividing the original dataset of 20k+ coupler curves.

4.3 Mechanism synthesis for User Inputted Trajectory
When the user inputs a curve Xpath, it’s run through the en-

coder network of VAE to find the µ and σ vectors. Multiple z
vectors are then sampled from the latent distribution which de-
notes a family of feasible curve signatures. These curve signa-
tures are then compared to each of the cluster centers using the

P2 norm error metric. Once a center is selected, the best avail-
able mechanism within the cluster can be returned to the user as
a feasible solution. Thus, the user can find multiple defect-free
solution mechanisms.

5. EXAMPLES OF PATH SYNTHESIS FOR SPATIAL
CURVE

In this section, we provide two examples of our algorithm
in action. In the examples, we input a spatial trajectory. The
trajectory is then processed by the encoder of our VAE resulting
in a 30-dimensional Gaussian distribution specified by µ and σ .
We sample five latent vectors z from this distribution and look up
the closest cluster centers in our database. In the cluster, we find
the best approximation of the coupler path available and provide
it as a solution.

The input trajectory is shown in the first plot in Fig. 13 and
Fig. 14. The other plots show a prospective 5-SS solution that
closely matches the target path. More mechanisms can be gener-
ated by sampling additional latent vectors from the VAE.

6. CONCLUSION

Thus, in this paper, we have discussed a complete pipeline
including data generation, data cleanup, and machine learning
model creation for defect-free path synthesis of spatial 5-SS
mechanism. To generate coupler path data, we use a geomet-
ric constraint based numerical approach which uses Newton-
Raphson optimization. Then, the data is pre-processed using in-
trinsic curve properties including curvature and torsion. Finally,
unsupervised machine learning techniques of VAE and K-mean
clustering are used to efficiently find solution mechanisms.
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FIGURE 13: Example 1
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