
An Optimal Parametrization Scheme

for Path Generation Using Fourier

Descriptors for Four-Bar Mechanism

Synthesis

Shashank Sharma
Computer-Aided Design and Innovation Lab,

Department of Mechanical Engineering,

Stony Brook University,

Stony Brook, NY 11794-2300

Anurag Purwar1

Computer-Aided Design and Innovation Lab,

Department of Mechanical Engineering,

Stony Brook University,

Stony Brook, NY 11794-2300

Q. Jeffrey Ge
Computer-Aided Design and Innovation Lab,

Department of Mechanical Engineering,

Stony Brook University,

Stony Brook, NY 11794-2300

Fourier descriptor (FD)-based path synthesis algorithms for gen-
eration of planar four-bar mechanisms require assigning time
parameter values to the given points along the path. An improper
selection of time parameters leads to poor fitting of the given path
and suboptimal four-bar mechanisms while also ignoring a host
of mechanisms that could be potentially generated otherwise. A
common approach taken is to use uniform time parameter values,
which does not take into account the unique harmonic properties
of the coupler path. In this paper, we are presenting a nonuniform
parametrization scheme in conjunction with an objective function
that provides a better fit, leverages the harmonics of the four-bar
coupler, and allows imposing additional user-specified
constraints. [DOI: 10.1115/1.4041566]
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1 Introduction

This paper is concerned with the path generation problem,
wherein a path is usually given as a sequence of discrete points in
R2 and the goal is to find dimensions of a planar four-bar mecha-
nism such that a point on the coupler of the mechanism traces the
given points as close as possible [1]. Optimization-based techni-
ques attempt to minimize an objective function and find mecha-
nisms, which best approximate a curve generated by using Fourier
series [2]. This curve, called the task curve, requires point data on
the prescribed path and associated time parameter values. Discrete
Fourier transform has been used to calculate the Fourier coeffi-
cients or Fourier descriptors (FDs) of the task curve from the pre-
scribed path. FDs have been frequently used in computational
shape analysis to create the objective function [3–9]. This
paper focuses on solving the path generation problem using an
FD-based technique.

McGarva and Mullineux [5] studied the inherent dependency of
FDs of a task curve on time parametrization and concluded that
different parametrization leads to different FDs. In previous stud-
ies, this limitation has been ignored and the parametrization has
been assumed to be uniform. This results in a task curve, which
might be suboptimal for use in mechanism synthesis.

Figure 1 demonstrates an instance, where using a nonuniform
parametrization yields a better mechanism than a uniform para-
metrization. A test mechanism is taken and ten arbitrary points are
sampled on its coupler curve to generate the input data. Once the
task curve is calculated, a four-bar coupler curve is fitted to syn-
thesize a mechanism for each case. Comparing the resulting
mechanisms with the input shows that nonuniform parametriza-
tion fits the points more accurately and better matches the first
mechanism. Although, in computer aided design, finding paramet-
rization for a given sequence of points in the context of curve
interpolation is a common problem, here we have the additional
burden of ensuring that the parametrization is compatible with the
properties of the coupler curves of planar four-bar mechanisms. In
the example presented later on, we will show that the optimized
task curve matches the harmonic contents of the coupler curve
better than an arbitrary choice of parameters. Finding this opti-
mum nonuniform parametrization serves as the motivation of this
paper.

Recently, Li and Chen [10] proposed an approach to eliminate
time dependency using arc length parametrization. It is well
known in computer aided design community that finding an
explicit closed-form expression for arc-length parametrization is
impossible. As a result, they numerically guess the nonuniform
parametrization using the distance between input points. Geomet-
rically, the formulated parametrization is close to being time-
independent. But this approach forces the coupler point to move
at a constant speed along the task curves and eliminates a host of
other possible four-bar mechanisms.

In this paper, a novel methodology, which calculates the opti-
mal parametrization for a sequence of points, has been proposed.
For a four-bar coupler curve, the magnitude of its higher order
harmonics has been observed to be negligible by Freudenstein [3]
and Li et al. [11]. This property is used to search for an optimal
parametrization to generate a task curve with low magnitude
higher order harmonics. Coupler speed criteria for enhanced con-
trol over the task curve have also been incorporated. A new cost
function is proposed that combines the cost of fitting to the given
data points, the cost of low magnitude higher order harmonic, and
the penalty for larger speed ratios. Nelder–Mead optimization is
used to compute two critical state space parameters that minimize
the cost function and provide optimized time parameters. There-
after, we use the algorithm presented by Wu et al. [7] to synthe-
size a four-bar mechanism from the optimal task path. This
algorithm fits task curve FDs to coupler curve FDs using a four-
dimensional search space instead of the conventional ten-
dimensional search space.

The rest of this paper is organized as follows: Section 2 reviews
an existing FD-based path generation approach, which supple-
ments the proposed algorithm for four-bar mechanism synthesis.
Section 3 introduces a family of nonuniform parametrization and
a methodology for finding the optimal one among them. Section 4
presents an example, which illustrates the effectiveness of the pro-
posed approach.

2 Review of Fourier Descriptor Based Path

Generation

This section provides a brief overview of an existing FD-based
path generation algorithm proposed by Wu et al. [7], which is
used in conjunction with the improved task curve generation
method as discussed in Sec. 3 for four-bar synthesis.

In this method, input path points are used to calculate a task
curve described by a trigonometric polynomial curve with an
open interval and is represented as
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zðtÞ ¼
Xp

k¼�p

Tkeikxot 8 t 2 ½0; tmax� (1)

where zðtÞ ¼ xðtÞ þ iyðtÞ denotes the point coordinates in complex
form at time t, k are the frequency indices, Tk are the FDs, xo is
the angular velocity of crank, and [0, tmax] is the time interval
over which the curve is defined. It has been shown that a task
curve with p¼ 5 captures the four-bar coupler path very accu-
rately and is deemed sufficient for practical implementation [11].
Taking x0¼ 2p and tmax � (0, 1] represents the possible closed
and open task paths. The FDs are calculated by solving the least
square fitting problem with the objective function as

D ¼
Xn

i¼1

zðtiÞ �
Xp

k¼�p

Tkeikxoti

�����
�����

2

(2)

where n is the number of input points. If n< (2pþ 1), then the
highest 2d(2pþ1�n)/2e harmonics are specified as zero to find a
unique solution. Here, d…e represents the ceiling function. Find-
ing the domain [0, tmax] for the open task path is a one-
dimensional optimization problem for minimum error measure
defined in Eq. (2). Once a time parametrization is chosen or
assumed, the task curve can be calculated.

A four-bar mechanism can be represented by the design param-
eters x0, y0, l1, l2, l3, l4, r, a, h1, and initial crank angle /0 as dis-
played in Fig. 2. The analytic equation of coupler point P can be
given as

P ¼ A0 þ l2eih1 ei/ þ reiaeih1 eik (3)

where k is the coupler angle as shown in Fig. 2 and A0 is the com-
plex form of the fixed pivot given by (x0, y0). A closed-form
expression for k using loop-closure criteria is available in litera-
ture [7], and can be approximated using FDs as

eik ¼
Xp

k¼�p

Ckeik/ (4)

where Ck are coupler angle FDs whose value depends upon the
link lengths l1, l2, l3 and l4, and /¼/0þx0t.

The coupler path can also be expressed as a Fourier series given
in Eq. (5) where Pk are coupler path FDs

P ¼
Xp

k¼�p

Pkeikxt (5)

By substituting Eq. (4) into Eq. (3) and collecting coefficients of
eikxt to form Eq. (5), we can express the Pk as

P0 ¼ reiaeih1 C0 þ A0 (6)

P1 ¼ reiaeih1 C1ei/0 þ l2eiðh1þ/0Þ; and (7)

Pk ¼ reiaeih1 Ckeik/0 jk 6¼0;1 (8)

The coupler path can now be fitted to the task curve to calculate
the four-bar design parameters using Eqs. (1) and (5). Equating Tk

to Pk leads to a system of equations with ten unknowns given as
following:

S ¼ l2;
l2

l1

;
l3
l1
;
l4
l1
; x0; y0; h1;/0;C;S

� �
(9)

where C ¼ r cosðaþ h1Þ and S ¼ r sinðaþ h1Þ. Equation (8)
depends on six design variables l2=l1; l3=l1; l4=l1;/0;C;S

� �
,

while the remaining four variables {l2, x0, y0, h1} exist independ-
ently in Eqs. (6) and (7). Wu et al. [7] show that the six-
dimensional design space in Eq. (8) can be further reduced to a
four-dimensional space of l2=l1; l3=l1; l4=l1;/0

� �
by analytically

minimizing the following objective function:

I ¼
X
k 6¼0;1

jCkreiðaþh1þk/0Þ � Tkj2 (10)

This objective function is obtained by summing the squared dif-
ference of Pk given in Eq. (8) and Tk.

Fig. 1 Path generation of two four-bar mechanisms; one using uniform parametrization while the other using optimal nonuni-
form parametrization

Fig. 2 A planar four-bar mechanism showing dimensional
parameters
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The direct search method has been used by Wu et al. [7] to
solve this optimization problem. In summary, matching task path
FDs to coupler path FDs using a four-dimensional search space
forms the core of this approach.

3 Optimum Parametrization

The task curve calculation is inherently associated with the
time parametrization used. However, there are infinite ways to
select a nonuniform parametrization. To make the problem tracta-
ble and facilitate the selection of a single nonuniform parametriza-
tion, a chord length-based parametrization scheme for n-points
sequence is defined as

t1 ¼ 0 (11)

tk ¼ tmax

Xk

i¼2

jzi � zi�1ja

Xn

i¼2

jzi � zi�1ja

0
BBBBB@

1
CCCCCA (12)

Here, tk represents the time parameter associated with the kth path
point, tmax is the interval domain as defined in Eq. (1), zi repre-
sents the coordinates of ith point, and a 2 R is the parametriza-
tion control variable. Varying the control variable a generates
multiple parametrizations. In this scheme, when a¼ 0 and a¼ 1,
we obtain uniform and arc length parametrizations, respectively.
Physically, uniform parametrization results in a task curve where
the coupler takes equal amount of time to pass through each target
point. Similarly, the arc length parametrization approximates con-
stant speed motion of the coupler. By varying a, one can generate
different parametrizations for the calculation of the task curves,
which, in turn, could provide a range of mechanism design solu-
tions and also facilitates selection of an optimal parametrization,
leading to mechanisms that provide better fit with the input data.

To measure the quality of the task curve, we define a cost func-
tion as following:

Ct ¼ Cf þ Ch þ Cs (13)

where Cf is the cost attributed to FD fitting error, Ch is the cost
due to higher order harmonic content, and Cs is the cost due to
enforced speed criteria on the task curve.

If the path (zi), parametrization control variable (a), and time
domain (tmax) are known, the FDs of an open task curve can be
mean square fitted as shown in Eq. (2). The square-root of the
residual in the fitting process is normalized to define Cf in the cost
function and is given as

Cf ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

zi �
Xp

k¼�p

Tkeikxoti

�����
�����

2
vuut (14)

Here, n represents the total path points, zi are the path coordinates,
Tk are the task curve FDs, and ti is the time parameter attached to
ith point. This term ensures that the selected parametrization and
domain accurately represent the original point data.

The second term in the cost function, namely harmonic cost, is
motivated by the observation from Li et al. [11] that the magni-
tude of higher order harmonics is negligible for four bars. As a
result, task curves whose higher order harmonics have minimal
magnitude would be better prospective curves for the path synthe-
sis process. To enforce this harmonic criterion, a weighted har-
monic magnitude-based metric is defined as

Ch ¼
1

2pþ 1

Xp

k¼�p

jkj þ 1ð ÞbkTkk (15)

Here, p is the maximum number of harmonics being considered, b
� 1 is a constant, and Tk are the task curve FDs. The term
ðjkj þ 1Þb adds larger weight to the higher order harmonics.

In practical scenarios, large coupler speed changes can lead to
large induced forces on the links, which could compromise their
rigidity and render the kinematic analysis useless. In contrast, a
uniform speed motion of the coupler can also be undesirable in
some instances, such as when designing a quick-return mecha-
nism. Thus, enforcing a speed-based criterion over the task curve
gives users more control in design. To select a task curve with
desirable speed properties, speed cost (Cs) is defined using quad-
ratic penalty function as follows:

Cs ¼ w½maxð0; Sr;min � SrÞ2 þmaxð0; Sr � Sr;maxÞ2� (16)

where Sr represents ratio of task curve’s maximum to minimum
speed. Sr,min and Sr,max are the minimum and maximum speed
ratio bounds enforced by the designer and w is the penalty weight
imposed. In case there are no speed restrictions, Sr,min and Sr,max

can be set to 1 and infinity, respectively. w¼ 103 has been taken
in the implementation. The expression for task curve speed can be
calculated by differentiating Eq. (1), which gives

sðtÞ ¼
Xp

k¼�p

ikxoTkeikxot

�����
����� (17)

Maximum and minimum speeds can be calculated numerically by
sampling a large number of points over the task curve.

Thus, an optimal task curve can be calculated by minimizing
the total cost (Ct) as given in Eq. (13). The search space is two-
dimensional with a and tmax as the state variables. Thereafter, the
optimal chord length-based time parametrization can be calcu-
lated using Eqs. (11) and (12). Nelder–Mead optimization has
been used for searching the state space. With the task curve
known, a four-bar mechanism can be generated as discussed in
Sec. 2. The complete Fourier-based path synthesis algorithm
using optimum parametrization has been summarized in the
Algorithm 1.

Algorithm 1: Path generation using Fourier descriptor based
approach with optimal parametrization

Input: Set of path points
1 Search for optimum a and tmax by minimizing Ct given in Eq. (13).

2 Calculate l2
l1
; l3

l1
; l4

l1
;/0;C;S

n o
by minimizing I given in Eq. (10)

3 Calculate {l2, x0, y0, h1} using Eqs. (6) and (7) to synthesize a four-bar
mechanism.

Output: Four-bar design parameters

4 Example

This example demonstrates the improvement made using the
proposed methodology. A 12-point trajectory is taken as the input
and is given in Table 1. In this example, we use xo¼ 2p rad/s
(Eq. (2)) and b¼ 2 (Eq. (15)).

First, we use uniform parametrization to create a task curve.
The task curve is calculated to have tmax¼ 0.8770 and FDs as
given in Table 2. The task curve fitting error, as defined in Eq. (2),
is found to be D¼ 0.3509. From this task curve, a mechanism is
synthesized to find the four-bar design parameters. Coupler curve
FDs and computed mechanism parameters are given in Tables 3
and 4, respectively. Coupler curve fitting error, as defined in

Table 1 Input point data

No. Coordinate (x, y) No. Coordinate (x, y) No. Coordinate (x, y)

1 0.000, �1.000 5 �2.866, �2.118 9 0.246, �2.135
2 �0.550, �0.942 6 �2.608, �2.488 10 0.876, �1.615
3 �1.696, �1.018 7 �2.098, �2.720 11 0.986, �1.329
4 �2.821, �1.715 8 �0.546, �2.551 12 0.593, �1.123

Journal of Computing and Information Science in Engineering MARCH 2019, Vol. 19 / 014501-3

Downloaded From: https://computingengineering.asmedigitalcollection.asme.org on 12/17/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Eq. (10), is calculated to be I¼ 0.0228. The synthesized mecha-
nism can be viewed in Fig. 3(a).

Next, mechanism synthesis is accomplished using optimal para-
metrization. The task curve is calculated to have tmax¼ 0.9336,
a¼ 0.5823 and FDs as given in Table 2. The task curve fitting
error is observed to be D¼ 0.0591, which is better than the previ-
ous case. Subsequently, a mechanism is synthesized and the cou-
pler curve FDs and the solution mechanism parameters are given
in Tables 3 and 4, respectively. The coupler curve fitting error is

Table 3 Coupler curve FDs

Parametrization

Descriptor Uniform Optimal
Optimal with
speed criteria

�5 0.011þ 0.006i �0.001þ 0.000i �0.001þ 0.000i
�4 0.008þ 0.019i 0.000þ 0.001i �0.001þ 0.000i
�3 0.049 � 0.019i �0.006 � 0.011i �0.007 � 0.014i
�2 0.005þ 0.104i �0.005 � 0.020i �0.001 � 0.031i
�1 0.430 � 0.453i 0.412 � 0.291i 0.376 � 0.262i
0 �0.822 � 1.696i �0.960 � 1.763i �0.970 � 1.764i
1 0.352þ 1.334i 0.715þ 1.167i 0.719þ 1.148i
2 0.055 � 0.170i 0.004 � 0.074i �0.006 � 0.077i
3 0.000 � 0.034i �0.006þ 0.006i �0.004þ 0.007i
4 �0.006 � 0.025i 0.003 � 0.000i 0.003 � 0.001i
5 �0.005 � 0.012i �0.001 � 0.000i �0.001 � 0.000i

Table 4 Synthesized mechanism parameters

Parametrization

Variable Uniform Optimal Optimal with speed criteria

l1 10.020 9.271 10.140
l2 1.921 2.085 1.464
l3 6.719 6.520 3.994
l4 5.423 5.160 8.139
x0 �6.464 �5.560 11.951
y0 1.659 0.931 �2.386
h1 �0.346 �0.191 0.859
r 12.191 11.519 10.194
a 0.119 0.001 0.661
/0 0.774 0.764 3.218

Table 2 Task curve FDs

Parametrization

Descriptor Uniform Optimal
Optimal with
speed criteria

�5 0.035 � 0.051i �0.001þ 0.013i �0.003þ 0.017i
�4 �0.021þ 0.033i �0.034 � 0.013i �0.011 � 0.007i
�3 0.008þ 0.037i �0.022 � 0.014i �0.021 � 0.016i
�2 �0.015þ 0.086i �0.009 � 0.018i �0.003 � 0.036i
�1 0.420 � 0.455i 0.412 � 0.290i 0.378 � 0.261i
0 �0.822 � 1.696i �0.960 � 1.763i �0.970 � 1.764i
1 0.352þ 1.334i 0.715þ 1.167i 0.719þ 1.148i
2 0.074 � 0.204i �0.005 � 0.072i �0.015 � 0.065i
3 0.054 � 0.051i �0.053 � 0.008i �0.072þ 0.013i
4 �0.051 � 0.077i �0.045þ 0.002i �0.021 � 0.002i
5 �0.019þ 0.042i �0.002 � 0.010i 0.003 � 0.032i

Fig. 3 Synthesized solutions using different parametrizations: (a) uniform parametrization, (b) optimal parametrization, and
(c) optimal parametrization with speed criteria

Fig. 4 Comparison of task curve and coupler curve weighted
FDs for uniform and optimal parametrization
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found to be I¼ 0.0067, which is also less than the uniform para-
metrization case. The synthesized mechanism can be viewed in
Fig. 3(b). While using nonuniform parametrization enables the
reduction of fitting error D, this example demonstrates that a task
curve with low magnitude higher order harmonics decreases I and
leads to a better task-coupler curve matching. Figure 4 displays
the comparison of weighted FDs, given as Tw;k ¼ ðjkj þ 1Þ2jjTkjj,
for uniform and optimal parametrization. These figures show that
for optimal parametrization case, the magnitude of the higher
order harmonics is less compared to the uniform case for both the
task and the coupler curves.

Finally, mechanism synthesis involving speed criteria is carried
out. Speed ratio for the task curve calculated using uniform para-
metrization is observed to be 8.22. Let us assume that the user
desires to constrain Sr such that 1 � Sr � 2. After applying the
speed criteria, the task curve is calculated to have tmax¼ 0.9234,
a¼ 0.7885 and FDs as given in Table 2. The task curve fitting
error is observed to be D¼ 0.1813. The Sr of the generated task
curve is 2. Comparison of task curve speeds has been done in
Fig. 5. It can be observed that the new task curve has reduced the
speed ratio. Synthesized mechanism design parameters are given
in Table 4. The coupler curve fitting error is observed to be
I¼ 0.0444 and the solution is displayed in Fig. 3(c).

5 Conclusion

In this paper, a nonuniform parametrization scheme has been pro-
posed for the task curve calculation from a given sequence of path
points. A novel methodology to find the optimal parametrization

based on fitting accuracy, the harmonic properties of four-bar cou-
pler path, and user imposed speed criteria have been demonstrated.
Synthesis of a more accurate four-bar mechanism for path genera-
tion has been shown using an example. The proposed approach
improves upon the existing FD based path generation algorithm for
mechanism synthesis.
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