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A Motion Synthesis Approach
to Solving Alt-Burmester
Problem by Exploiting Fourier
Descriptor Relationship Between
Path and Orientation Data
This paper presents a generalized framework to solve m-pose, n-path-points mixed syn-
thesis problems, known as the Alt-Burmester problems, using a task-driven motion syn-
thesis approach. We aim to unify the path and motion synthesis problems into an
approximate mixed synthesis framework. Fourier descriptors are used to establish a
closed-form relationship between the path and orientation data. This relationship is then
exploited to formulate mixed synthesis problems into pure motion synthesis ones. We use
an efficient algebraic fitting based motion synthesis algorithm to enable simultaneous
type and dimensional synthesis of planar four-bar linkages. [DOI: 10.1115/1.4042054]
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1 Introduction

Conventionally, mechanism synthesis problems have been cate-
gorized and studied independently as path, motion, and function
synthesis problems [1]. Path synthesis problems specify only
path-point coordinates (xi, yi), while motion synthesis problems
specify pose constraints (xi, yi, fi), where (xi, yi) are the coordi-
nates of the path points or the origin of a moving frame attached
to a given pose, while fi is the orientation of the moving frame. In
function synthesis, only input–output angle pairs (hi, wi) are speci-
fied. Unfortunately, most of the real world problems do not con-
form to such a rigid categorization—many practical problems
provide a mixture of path, motion, and function synthesis require-
ments. However, a synthesis approach which seamlessly incorpo-
rates all the three conventional synthesis problems has been
elusive. As a result, machine designers often have to compromise
on design specifications. In this paper, the focus is on the synthesis
of planar four-bar mechanisms for a hybrid of path and motion
synthesis problems. This problem formulation, which consolidates
both path and orientation data, has been termed as mixed synthesis
in this paper.

Murray’s group termed the combined path and motion prob-
lems as the Alt-Burmester problems [2] named after Alt’s [3] and
Burmester’s [4] work on path and motion generation, respectively.
Brake et al. [5] discuss the dimensionality of solution sets for a
variety of path-point and pose combinations. However, a finite
number of solutions exist only for a subset of possible m-pose, n-
path-point synthesis problem. For example, there exist finite solu-
tions for nine path points and for five poses independently. We
define such problems to be fully constrained problems. For a
lesser number of path points or poses, usually an infinite number
of solutions are obtained. Subsequently, the authors explore only
fully constrained or under-constrained problem sets where up to
nine constraints can be used to find four-bar mechanism parame-
ters. This ignores the vast majority of over-constrained problems
in m-pose, n-path-point mixed synthesis family of problems,
where exact solutions are not possible and only approximate,

albeit useful solutions, can still be obtained. This is reflective of
real-world design problems, which usually impose a large number
of often challenging constraints.

A graphical approach has been presented by Zimmerman [6] to
solve the mixed path, motion and function problem using sketch-
ing tools built in modern computer-aided design (CAD) softwares.
The proposed methodology can conveniently solve under-
constrained and fully constrained mixed synthesis problems and
generate four-bar mechanisms. However, this methodology is
unable to solve generalized m pose, n path-point synthesis prob-
lems, which may be over-constrained. This study does state the
possibility of including prismatic joints in the synthesized mecha-
nism. However, it is not the focus of study and details on synthe-
sizing mechanical dyads with at least one prismatic joint are not
included.

Motion synthesis turns out to be a mathematically less complex
problem than path synthesis as each dyad can be generated inde-
pendently effectively halving the number of unknowns. Typically,
path synthesis problems involve solving a nonlinear system of
equations. We have recently presented a generalized framework
for solving motion synthesis problems using an efficient algorithm
that involves solving a linear system of equations using singular
value decomposition (SVD) [7–11]. The algorithm produces mul-
tiple solutions and can compute both the type and dimensions of
the four-bar mechanisms. The algorithm produces results in real
time and is thus amenable to its implementation in interactive
computational design tools [7].

In this paper, we are presenting an approach to solve the Alt-
Burmester problem by reducing it to a pure motion synthesis prob-
lem so that the aforementioned algorithm can be leveraged. In a
planar four-bar linkage, the path of a coupler point is inextricably
tied to the orientation of the coupler. This coupling can be
revealed by analyzing and relating the harmonic content of the
path and orientation data. First, an analytical relationship between
the orientation- and path data is obtained using the harmonic
breakdown of the loop closure equation. Then, this relation is
used to reformulate the mixed synthesis problem into a motion
synthesis problem by attaching compatible orientations to input
path points and consequently turning them into poses. The Fourier
approximation-based analytical approach proposed in this paper
can handle almost all possible variations of path points or poses.
Once, the problem has been converted into a pure motion
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synthesis problem, we re-purpose our algebraic fitting approach in
Refs. [10] and [11] to solve for four-bar linkages. Figure 1 pro-
vides an overview of this approach.

We note that here mixed synthesis does not refer to the mixed
exact-approximate path or motion synthesis, wherein we have a
set of precision and approximate constraints. Our definition of
mixed refers to a mixture of path-point and pose constraints.

This paper’s original contributions are in (1) the formulation of
a Fourier descriptor-based closed-form relationship between cou-
pler orientations and path, (2) the novel use of this relationship to
solve the generalized m-pose, n-path mixed synthesis problem,
and (3) the incorporation of task-driven algebraic fitting-based
motion synthesis within the mixed synthesis algorithm for
synthesis.

Rest of the paper is organized as follows: Section 2 calculates a
new path–orientation formulation from existing four-bar loop clo-
sure Fourier decomposition. Section 3 discusses the use of
path–orientation relationship to reformulate mixed synthesis into
motion synthesis problem. Section 4 reviews algebraic fitting-
based motion synthesis algorithm. Section 5 proposes a new algo-
rithm to solve mixed synthesis problem and finally in Sec. 6, we
present a few examples to demonstrate the efficacy of the pro-
posed approach.

2 Fourier Descriptor-Based Relations

Use of Fourier descriptors is abundant in the domain of mecha-
nism synthesis. It has been used for planar four-bar mechanism
synthesis using optimization routines [12–16], atlas-based search
algorithms [17,18], and machine learning approach [19]. Fourier
descriptors have also been used to synthesize spherical [20] and
spatial mechanism [21]. A class of single degree-of-freedom
open-loop mechanisms termed as planar coupled serial chain
mechanisms [22,23] have also been generated with the help of
Fourier descriptors.

In this section, we are interested in exploring the relationship
between the coupler path and coupler orientation to establish a
closed-form relationship between them. This would give us a
framework for dealing with both pose and path constraints simul-
taneously. Path and motion synthesis formulations, which use
Fourier decomposition of four-bar closure equation [14–16] are
used as a starting point here. In Ref. [16], Li et al. presented a
decomposition of the design space of four-bar mechanisms by
using Fourier descriptors in the context of planar motion approxi-
mation. Harmonic decomposition of four-bar loop closure equa-
tion has been analyzed to independently fit rotational and
translational Fourier descriptors and synthesize motion.

A four-bar mechanism is represented by its design parameters
x0, y0, l1, l2, l3, l4, r, h1, and a as displayed in Fig. 2. These param-
eters are constant for a given four-bar mechanism. Coupler angle
k represents the varying orientation of coupler link with respect to
fixed link at any given instant. Point P is the location of the cou-
pler point in the global frame, which is also a variable. Coupler
orientation f refers to the orientation of a moving frame attached
to the coupler point, while d is the constant angle at which moving
frame is attached to coupler with respect to the coupler link line

AB. All of these design parameters are unknown before a mecha-
nism has been synthesized. Our goal is to find an explicit closed-
form relationship between coupler path and orientation which
forms the heart of our mixed synthesis algorithm.

2.1 Coupler Angle. The Fourier series representation of the
coupler angle k for a four bar mechanism is given as

ejk ¼
X1

k¼�1
Ckejk/ ¼

X1
k¼�1

Ckejkxtejk/0 (1)

where Ck are the harmonic descriptors of coupler angle, / the
crank angle, /0 the initial crank angle, and x is the constant angu-
lar speed of the input link.

2.2 Coupler Path. The analytical equation which defines the
path of coupler point P for a four bar mechanism is given by

P ¼ A0 þ l2ejh1 ej/ þ rejaejh1 ejk (2)

where A0 is the complex form of the position of input link fixed
pivot, l2 is the length of input link, h1 is the angle of fixed link,
and r and a are the coupler parameters. Being a periodic function,
it can also be represented as a Fourier series

P ¼
X1

k¼�1
Pkejkxt (3)

Fig. 1 An overview of our approach to the Alt-Burmester problems: (a) specify m-pose, n-path points,
(b) a task curve is fit through the m 1 n path points using Fourier series, (c) use the harmonic content of
the path data to find the missing orientations at the n-path points, and (d) finally, compute both type and
dimensions of planar four-bar linkages

Fig. 2 Visualization of parameters describing a four-bar
mechanism
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Substituting Eq. (1) into Eq. (2) and then equating resulting (2)
and (3), we get harmonic descriptors Pk for the path as follows:

P0 ¼ C0rejðaþh1Þ þ ðjy0 þ x0Þ; k ¼ 0 (4)

P1 ¼ C1ej/0 rejðaþh1Þ þ l2ejh1 ej/0 ; k ¼ 1 (5)

Pk ¼ Ckejk/0 rejðaþh1Þ; k 6¼ 0; 1 (6)

2.3 Coupler Orientation. The orientation (f) at the coupler
point for a four-bar mechanism can be defined as

f ¼ dþ kþ h1 ¼ argðejðdþkþh1ÞÞ (7)

where d is the fixed angle at which moving frame is attached to
coupler with respect to h1þ k. As k varies periodically while d
and h1 remain constant, the orientation can be decomposed har-
monically as

ejðdþkþh1Þ ¼
X1

k¼�1
C�kejkxt (8)

where C�k are the harmonic descriptors for orientation and
obtained as

C�k ¼ Ckejðdþh1Þejk/0 (9)

by substituting for ejk from Eq. (1) in Eq. (8).

2.4 Path–Orientation Relation. With the above-mentioned
relations, it is now possible to find explicit closed form relations
between the Fourier descriptors of coupler path and coupler orienta-
tion data. Using Eqs. (4)–(6), and (9), relationship between the har-
monic descriptors of path (Pk) and orientation (C�k) is found to be

C�0 ¼ ðP0 þ z2Þz1 (10)

C�1 ¼ ðP1 þ z3Þz1 (11)

C�k ¼ Pkz1 (12)

where

z1 ¼
ej d�að Þ

r
(13)

z2 ¼ �ðx0 þ jy0Þ (14)

z3 ¼ �ðl2ejh1 ej/0Þ (15)

Using the above-mentioned relationship, the orientation at cou-
pler point can be defined exclusively using path harmonic descrip-
tors as follows:

ejfðtÞ ¼ z1 z2 þ z3ejxt þ
X1

k¼�1
Pkejkxt

 !
(16)

Subsequently, using Eq. (16) for n path points, the system of equa-
tion describing orientation at each path-point turns out to be

ejf1

ejf2

�

ejfn

2
66664

3
77775 ¼

1 ejxt1
X�p

k¼p

Pkejkxt1

1 ejxt2
X�p

k¼p

Pkejkxt2

� � �

1 ejxtn
X�p

k¼p

Pkejkxtn

2
6666666666664

3
7777777777775

z1z2

z1z3

z1

2
64

3
75 (17)

Thus, the orientations at different points of a four-bar coupler
path are dependent on path descriptors and three complex varia-
bles z1, z2, and z3, which are termed as mixed synthesis parameters
(MSP). The MSP are dependent on four-bar mechanism design
parameters according to Eqs. (13)–(15). Equation (17) is the key
to the mixed synthesis formulation. It will help us find orientation
information for path points as discussed in Sec. 3.

3 Calculating Unknown Orientations

The aim of this section is to reformulate m-pose, n-path-point
mixed synthesis problems into an mþ n- pose motion synthesis
problems. To enable that, generation of orientation data for n path
points and converting them to n poses is required. Equation (17)
will be used to accomplish this objective.

For a m-pose, n-path synthesis problem, a task path described
by a trigonometric polynomial curve with an open interval is cal-
culated and represented as

zðtÞ ¼
Xp

k¼�p

Tkeikxt 8 t 2 ½0; tmax�; tmax < 1 (18)

where z(t)¼ x(t)þ iy(t) denotes the point coordinates in complex
form at time t, k are the frequency indices, Tk are the task curve
Fourier descriptors, x is the angular velocity of crank, and [0,
tmax] is the time interval over which the curve is defined. The Tk

can be calculated by least square minimization of

D ¼
Xn

i¼1

zðtiÞ �
Xp

k¼�p

Tkeikxti

�����
�����

2

(19)

where D is the fitting error measure and z(ti) are the complex-
valued point data at time ti. Analytically solving the minimization
problem gives a linear system of equation as follows:

XXXX ¼ YYY (20)

where

XXX ¼ ½…;Tm;…�T
m!

(21)

X ¼
� � �

�
Xn

i¼0

eiðk�mÞhi �

� � �

" #
k!

# m (22)

YYY ¼ …;
Xn

i¼0

zðtiÞe�imhi ;…

" #T

m!

(23)

Here, k and m vary from –p to p which denote the column and
row index of an element in the matrix. Thus, XXX and YYY are m-
dimensional vectors while X is a m� n dimensional matrix.
Lower-upper decomposition can be used to solve the above-
mentioned system. More details can be found in the work done by
Wu et al. [14]. In Ref. [24], we have proposed a method to calcu-
late optimal time parametrization for task curve for Fourier
descriptor fitting of the path data. In our implementation, task
curves are represented using up to eleven descriptors i.e., p �
[–5]. If mþ n< 11, we use a lesser number of descriptors to gen-
erate a unique task curve.

The reasoning behind using a task curve with low higher order
harmonic content is supported in literature [16,25], which says
that the magnitude of high harmonics for coupler path of a four-
bar mechanism has an insignificant impact. Thus, the fitted task
path is a good prospective four-bar coupler curve and the task
curve descriptors Tk can be equated to coupler path descriptors Pk.

The intention now is to find the MSP i.e., {z1, z2, z3} using
available orientation data and subsequently generate unknown
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orientations. We define the system of equation given by Eq. (17)
as fully constrained if all the MSP can be calculated exactly. For a
fully constrained MSP computation problem, three poses are
required to calculate the MSP directly from Eq. (17). Physically,
this condition makes perfect sense as the user might know orienta-
tions at the initial position, final position and an additional inter-
mediate location while a sequence of path points might be given
in addition.

For under-constrained MSP computation problem, there are
only one or two poses given. As a result, additional constraints are
required to uniquely calculate the MSP. The MSP are dependent
on four-bar mechanism parameters according to Eqs. (13)–(15).
These equations can be used to generate additional constraints
which are called mixed constraints (MIC). The three possible
MIC are

(1) Specify coupler parameters i.e., {r, a, d}! z1

(2) Specify actuating fixed pivot i.e., {x0, y0}! z2

(3) Specify scale of input link, orientation of fixed pivot line,
and initial angle i.e., {l2, h1, /0}! z3

Thus, if two poses are input by the user, one MIC is required to
fully define the system of equations in Eq. (17). If only one pose
is specified by user, two MIC are required to solve the problem.
Two pose problems are fairly common when only the first and last
orientations are important, such as in pick-and-place operations.
The MIC also mirrors practical user-specified constraints, such as
selection of the location of the fixed pivot where an actuator might
be situated. In another case, there might be a restriction on coupler
link dimensions. Thus, the MIC represents a set of practical design
constraints.

It is important to note that a pure path synthesis problem cannot
be restructured into a motion synthesis problem without fully
defining all three MSP. However, constraining all MSP simultane-
ously makes the synthesis less useful as most of the mechanism
parameters are then fixed.

For over-constrained MSP computation problems, the number
of poses specified is more than three. In this case, a least square
solution to Eq. (17) can be calculated using complex SVD. Real
SVD solvers, which are more easily available, can also be used by
reducing the complex system of equation in Eq. (17) into an
equivalent real system of equation in accordance with Ref. [26].
The K1 formulation presented in Ref. [26] has been used in our
implementation. According to the formulation, a complex system
of equation

ðAþ iBÞðxþ iyÞ ¼ bþ ic (24)

can be written as a real system of equation

A �B
B A

� �
x
y

� �
¼ b

c

� �
(25)

Finding least square solution to this equivalent real system of
equations gives the solution to original complex problem and val-
ues of MSP can easily be calculated in over-constrained cases.

Once the values of MSP z1, z2, z3 are calculated using m poses,
orientations at n path points can be found out by simple matrix
multiplication using the system of equation in Eq. (17). As a
result, n path points and m poses are converted to mþ n poses.
The motion synthesis algorithm can now be used to calculate
dyads. A review of algebraic fitting-based motion synthesis algo-
rithm is discussed in Sec. 4.

4 Motion Synthesis Algorithm

Now that the mixed synthesis problem has been reformulated
as motion synthesis problem, solution mechanisms can be
achieved by calculating the dyads. Algebraic fitting-based motion
synthesis algorithm [7–10] has been used in our implementation.
In this approach, a planar four-bar linkage is split open in two

dyads and each dyad is computed independently thus reducing
significant computational burden. Moreover, this approach ena-
bles us to carry out simultaneous type and dimensional synthesis
of four-bar linkages, i.e., it takes into consideration the possibility
of both revolute and prismatic joints. Another benefit of the
approach is its fast and efficient computation.

First, using kinematic mapping [27], each of the user-defined
pose {x, y, f} is mapped to quaternion space defined by a four-
dimensional vector Z¼ {Z1, Z2, Z3, Z4} called planar quaternions
[28]. This space is also termed as the Image Space of planar kine-
matics [27]. This mapping is defined by

Z1 ¼
1

2
x cos

f
2
þ y sin

f
2

� �
(26)

Z2 ¼
1

2
�x sin

f
2
þ y cos

f
2

� �
(27)

Z3 ¼ sin
f
2

(28)

Z4 ¼ cos
f
2

(29)

The geometric constraints of all types of dyads can be repre-
sented by a single algebraic equation as follows:

q1ðZ2
1 þ Z2

2Þ þ q2ðZ1Z3 � Z2Z4Þ þ q3ðZ2Z3 þ Z1Z4Þ
þ q4ðZ1Z3 þ Z2Z4Þ þ q5ðZ2Z3 � Z1Z4Þ þ q6Z3Z4

þ q7ðZ2
3 � Z2

4Þ þ q8ðZ2
3 þ Z2

4Þ ¼ 0 (30)

where qi(i¼ 1, 2,�, 8) are the homogeneous coefficients of the
manifold surface represented by the above-mentioned equation. In
Ref. [10], we call this as a generalized (G-) manifold, which is
capable of representing all types of mechanical dyads. For every
pose, one such linear equation with unknowns as qi is obtained.
Assembling all the G-manifold equations for all the poses results
in the following over-constrained homogeneous linear system on
equation:

Aq ¼ 0 (31)

where

A ¼

A11 A12 A13 A14 � � � � � � � � � A18

A21 A22 A23 A24 � � � � � � � � � A28

� � � � � � � �

An1 An2 An3 An4 � � � � � � � � � An8

2
664

3
775 (32)

and

q ¼ ½ q1 q2 � � � q8 �T (33)

The elements of each row of the matrix A are given as

Ai1 ¼ Z2
i1 þ Z2

i2 (34)

Ai2 ¼ Zi1Zi3 � Zi2Zi4 (35)

Ai3 ¼ Zi2Zi3 þ Zi1Zi4 (36)

Ai4 ¼ Zi1Zi3 þ Zi2Zi4 (37)

Ai5 ¼ Zi2Zi3 � Zi1Zi4 (38)

Ai6 ¼ Zi3Zi4 (39)

Ai7 ¼ Z2
i3 � Z2

i4 (40)
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Ai8 ¼ Z2
i3 þ Z2

i4 (41)

where i is the pose index ranging from i ¼ ð1; 2;…; nÞ. The least
square solution to this homogeneous system of equation can be
found out using the singular value decomposition of the coeffi-
cient matrix A [29]. The right singular vectors corresponding to
the smallest singular values are candidate solutions for the mini-
mization problem. The subspace spanned by the three smallest
singular value right-vectors represents a family of possible dyad
solutions. However, for these dyads to make physical sense, the
following extra constraints are required to be satisfied:

q1q6 þ q2q5 � q3q4 ¼ 0

2q1q7 � q2q4 � q3q5 ¼ 0
(42)

An analytical solution to the above reduces to a quartic equation,
which can give zero, two, or four real dyad solutions. Complex
solutions do not represent a physical dyad. Combining any of the
two dyads results in a four-bar mechanism. For further details, see
Ref. [10]. As a result, the path synthesis problem is solved and
prospective solutions are generated. Using this motion synthesis
algorithm also enables us to simultaneously carry out type and
dimensional synthesis. However, that is not the focus of this work.

The above-mentioned methodology for motion computation
works for five or more poses when the system of equation is fully
constrained or over-constrained. To handle under-constrained
cases, additional motion synthesis constraints (MOC) also called
geometric constraints outlined in Ref. [8] are used. We note that
the constraints being discussed here are the ones required to define
the motion computation problem, which are different from the
constraints discussed earlier in the context of MSP computation.
We ensure that the context would make it clear which constraints
are being discussed.

5 Unified Synthesis Algorithm

A unified synthesis algorithm to solve the Alt-Burmester prob-
lems has been summarized in Algorithm 1. It states that when the
synthesis problem has zero poses, the Fourier descriptor-based
path synthesis algorithm as described by Wu et al. [14] is used.
For all the other cases, mixed synthesis approach using Eq. (17)
can be used to solve for four-bar mechanisms. It must be noted
that except for the case where there are no poses, the synthesis
calculates both type and dimensions.

Algorithm 1. Algorithm for unified motion, path and mixed
synthesis

Input: Path points and Poses
1 if n(Pose)¼ 0 then

2 Calculate Tk using Eq. (19)
3 Calculate the four-bar mechanism by solving a minimization prob-

lem in a four-dimensional subspace as described by Wu et al. [14]
4 else

5 Calculate Tk using Eq. (19)
6 Calculate MSP using Eq. (17)
7 Calculate the singular vectors using Eq. (31)
8 Calculate the dyads using Eq. (42)
9 end

Output: Synthesized mechanism

A key advantage of the methodology outlined is that it can han-
dle motion, path, and mixed synthesis problems seamlessly. Vari-
ous permutations of ð0; 1;…;mÞ poses and ð0; 1;…; nÞ path-point
problems are presented in Table 1. The legends in the table are
MOC¼motion synthesis constraint [8], MIC¼mixed synthesis
constraint, FD¼ fully defined, and X¼ trivial or undefined. The
“*” refers to conditions where a Fourier task curve with just four
points needs to be fitted and would have unsymmetrical
descriptors.

Motion synthesis constraints can be used to specify the position
of fixed or moving pivots using line or point constraints or any
other compatible geometric constraint; see Ref. [8] for details.
Mixed synthesis constraints, described earlier, involve constraints
on actuating pivot, coupler dimensions, and other mechanism
parameters. Fully defined (FD) entails that no extra constraints are
needed to exactly or least square solve the mixed synthesis Eq.
(17). If either one of the MSP computation problem or motion
synthesis problem is under-constrained, the mixed synthesis prob-
lem is defined to be under-constrained. These under-constrained
cases in Table 1 require additional constraints to be solved. In the
table, zero-pose (or, pure-path synthesis) problems are solved
using Wu et al. [14]. In that case, when four or more path points
are specified, the problem is fully defined and is non-trivial; how-
ever, for n ¼ 4, we can only calculate unsymmetrical descriptors.
When only one pose is given, then two MIC are required to calcu-
late all the MSP; with two poses, one MIC is required; and for
three poses, no additional MIC are needed. However, for three
poses, at least two path points need to be specified to obtain five
poses needed for the motion synthesis algorithm. Burmester [4]
showed that one needs five poses to solve a motion generation
problem uniquely. In Ref. [7], we have extended Burmester prob-
lem to show that one can specify not only five poses, but a combi-
nation of pose and other geometric constraints to have unique
mechanism design solutions. Therefore, for one path point with
three poses, we need one MOC and for zero path point, we need
two MOC to get a total of five constraints. However, zero path-
point problem reduces to a pure motion generation problem. We
will illustrate some of these permutations and combinations in the
examples next.

6 Examples

In this section, we present some examples to illustrate the effec-
tiveness of the proposed algorithm. First example aims to validate
the approach by extracting path points and poses from a known
mechanism. Second example solves mixed synthesis problem
with fully constrained MSP computation involving three poses
and five path points. Third and fourth examples deal with under-
constraint MSP computation and motion synthesis cases and
require additional mixed- and motion-constraints, respectively.
Demonstrating valid results from each of these cases proves the
robustness of proposed algorithm. It also demonstrates the flexi-
bility of the algorithm and its ability to incorporate various con-
straints. In Figs. 3–8, two curves representing coupler path for the
two possible assembly modes have been displayed.

6.1 Example 1: Reverse Engineering a Mechanism. To val-
idate the proposed mixed synthesis algorithm, points and poses
from a known planar four-bar mechanism are taken and then our
algorithm is used to synthesize mechanisms. Ideally, we should
get the exact same mechanism. However, a similar mechanism is
also acceptable since approximations occur at various steps—
from task curve generation to algebraic fitting of the pose data.

Table 1 Various possibilities for unified motion, path, and
mixed synthesis problem

Path points

0 1 2 3 4 n

Poses 0 X X X X FD* FD
1 X X X 2 MIC* 2 MIC 2 MIC
2 X X 1 MIC* 1 MIC 1 MIC 1 MIC
3 2 MOC 1 MOC* FD FD FD FD
4 1 MOC FD FD FD FD FD
5 FD FD FD FD FD FD
m FD FD FD FD FD FD
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A sample mechanism displayed in Fig. 3 is used to generate
seven path points and five poses. The mechanism has been defined
using the position of its fixed pivots, moving pivots and coupler
coordinates as shown in Table 2.

The arbitrarily sampled poses and path points are listed in Table
3. This is a fully defined problem and all the MIC can be com-
puted without requiring any additional information. These con-
straints are used as input to mixed synthesis algorithm. Four
solution dyads are output as listed in Table 4. This also allows us
to reverse-engineer a known mechanism since there are six planar

Fig. 3 Example 1: known target mechanism

Fig. 4 Example 1: mechanism generated using mixed synthe-
sis algorithm

Fig. 5 Example 2: mixed synthesis with fully constrained MSP
computation for three poses and five path points

Fig. 6 Example 2: over-constrained motion synthesis for eight
poses produces a poor solution

Fig. 7 Example 3: under-constrained mixed synthesis for two
poses and four path points using additional mixed constraint

Fig. 8 Example 4: under-constrained mixed synthesis for three
poses and one path points using additional motion constraint
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four-bars that can satisfy the given constraints. Figure 4 shows a
four-bar obtained by assembling dyads 1 and 4. It is observed that
the mechanism generated is very similar to the original mecha-
nism. This approximate result is due to the best-fitted low har-
monic task curve following the original coupler curve closely but
not exactly. The average path error measured by calculating the
deviation of input points from final path using the Euclidean dis-
tance is 0.0694 units for the displayed configuration. The maxi-
mum angular deviation among all the given poses is for the pose 3
as 0.0736 rad.

In this example, the input data consisted of five poses and seven
path points. Greater than three input poses over-constraints the
MSP computation due to which the path–orientation relationship
is satisfied using SVD. Thus, this example demonstrates mixed
synthesis with over-constrained MSP computation.

6.2 Example 2: Mixed Synthesis With Fully Constrained
Mixed Synthesis Parameters Computation. In this example, the
input data consist of three poses and five path points which fully
constrain the MSP computation problem. The data input to mixed
synthesis algorithm is given in Table 5. The two dyads generated
as output have been shown in Table 6. The final mechanism has
been displayed in Fig. 5. It can be observed that a good match has
been established with the constraints. Average path error is
0.0226 units while the maximum angular deviation for poses is
0.0106 rad for second pose. Note that in this case, the
path–orientation relationship has an exact solution, i.e., MSP are
uniquely determined using SVD.

One of the major advantages of mixed synthesis is the addi-
tional flexibility it imparts to users while specifying inputs and

generating good solutions. Using a pure motion synthesis algo-
rithm, the user would have to input all the data as poses even if
the problem demanded otherwise. This would lead to an over-
constrained motion problem, which when solved using existing
kinematic mapping-based algebraic fitting approach [7–10] usu-
ally produces poor solutions. A comparable motion synthesis
problem for the same path points, but with orientations also given
is displayed in Fig. 6. It can be observed that the solution provides
a poor fit to the given constraints. This happens because the orien-
tation provided is not compatible with the motion of coupler of
the planar-four linkages.

6.3 Example 3: Mixed Synthesis With Under-Constrained
Mixed Synthesis Parameters Computation Using Mixed
Constraints. This example shows mixed synthesis with under-
constrained MSP computation problem where two poses and four
path points are specified in the input. Lesser than three input poses
makes MSP computation problem under-constrained. To solve for
MSP, an additional mixed constraint is required which could spec-
ify any of z1, z2, z3. The constraint data input to mixed synthesis
algorithm is shown in Table 7. A MIC is used to specify z2 by
defining the preferred location of a fixed joint at point (1,3). The
four dyads generated as output are shown in Table 8. One of the
final mechanisms is displayed in Fig. 7 using dyads 3 and 4. It can
be observed that the generated mechanism closely satisfies path
and mixed constraints. The average path error is 0.0948 units
while the maximum angular deviation for poses is 0.0389 rad for
the second pose in the displayed mechanism. Note that in this
case, the path–orientation relationship has an infinite solutions
and the use of MIC restricts the solution space to a unique solution
to the MSP.

6.4 Example 4: Mixed Synthesis With Under-Constrained
Motion Synthesis Using Motion Constraints. This example
shows mixed synthesis with under-constrained motion synthesis
problem where three poses and one path point is specified in the

Table 2 Example 1: sample mechanism design parameters as
shown in Fig. 3

Point X Y

Input link fixed pivot – 3.0 0.0
Input link moving pivot –2.0 1.0
Output link fixed pivot 2.0 1.0
Output link moving pivot –1.0 4.0
Coupler point 1.0 –1.0

Table 3 Example 1: input data

No. Type of data x y f (rad)

1 Point 0.350 –1.160 —
2 Point –0.410 –1.340 —
3 Pose –1.585 –1.737 5.853
4 Point –2.110 –2.030 —
5 Point –2.800 –2.970 —
6 Pose –2.216 –3.665 5.896
7 Point –0.420 –3.500 —
8 Point 0.910 –2.580 —
9 Pose 1.520 –1.832 0.351
10 Pose 1.912 –1.036 0.385
11 Point 1.560 –0.860 —
12 Pose 1.000 –1.000 0.000

Table 4 Example 1: output dyad data

Dyad Fixed pivot Moving pivot Coupler point

1 �2.793, –0.554 �2.056, 0.799 0.350, –1.160
2 �0.172, 6.978 1.340, 8.356 0.350, –1.160
3 �18.181, 11.280 �4.226, 6.257 0.350, –1.160
4 1.625, 0.824 0.081, 3.477 0.350, –1.160

Table 5 Example 2: input data

No. Type of data x y f (rad)

1 Pose –5.263 1.441 0.161
2 Point –3.810 1.690 —
3 Point –2.890 1.590 —
4 Point –2.010 1.120 —
5 Pose –1.416 0.789 5.919
6 Point –0.200 0.490 —
7 Point 1.040 0.600 —
8 Pose 2.206 1.203 0.405

Table 6 Example 2: output dyad data

Dyad Fixed pivot Moving pivot Coupler point

1 0.771, 3.424 –2.927, 0.266 –5.263, 1.441
2 –3.931, –2.151 –6.160, 6.975 –5.263, 1.441

Table 7 Example 3: input data

No. Type of data x y f (rad)

1 Pose 4.962 –0.514 0.134
2 Point 3.850 –1.480 —
3 Point 1.920 –0.740 —
4 Point 0.850 0.760 —
5 Point 3.360 1.650 —
6 Pose 4.900 1.178 0.510
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input. Motion synthesis is under-constraint because the total pose
and path constraints are just four. Even though three poses speci-
fied can be used to calculate the MSP, an additional motion con-
straint is required to solve the motion synthesis problem. The data
input to mixed synthesis algorithm is given in Table 9. A line con-
straint is used as MOC in the example presented. The line segment
is defined by its end points (–4,1) and (1,4). The four dyads gener-
ated as output are shown in Table 10. One of the final mechanisms
is displayed in Fig. 8 using dyads 1 and 2. It can be observed that
the generated mechanism closely satisfies path constraints. The
average path error is 0.0026 units while the maximum angular
deviation for poses is 0.0005 rad for second pose in the displayed
mechanism. Also, both the fixed pivots fall on the line constraint
specified. Thus, the synthesis problem is successfully solved. Note
that in this case, it is not the path–orientation relationship that is
under-defined but the algebraic fitting algorithm which requires at
least five poses to be fully defined.

7 Conclusion

In this paper, we have presented a generalized m pose, n path-
point mixed synthesis approach for four-bar mechanisms. Original
contributions of this paper include the closed-form relationship
between coupler orientation and coupler path and exploiting this
relationship to present a novel framework for solving the mixed
synthesis problem. Another novel feature is the use of task-driven
motion synthesis algorithm within the framework to keep the
computation cost at minimum and perform simultaneous type and
dimensional synthesis. A few examples were presented to demon-
strate the effectiveness of the approach.
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Table 9 Example 4: input data

No. Type of data x y f (rad)

1 Pose –2.018 –1.391 0.146
2 Pose 0.288 –1.115 0.287
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4 Pose 2.895 1.253 1.487

Table 10 Example 4: output dyad data

Dyad Fixed pivot Moving pivot Coupler point
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2 –1.181, 2.692 –2.002, 1.708 –2.018, –1.391
3 –3.322, 1.407 –4.111, 3.061 –2.018, –1.391
4 –3.322, 1.407 –4.111, 3.061 –2.018, –1.391

Table 8 Example 3: output dyad data

Dyad Fixed pivot Moving pivot Coupler point

1 8.705, 10.738 8.705, 10.738 4.962, –0.514
2 –7.961, 8.082 –3.450, 6.381 4.962, –0.514
3 0.973, 3.179 1.004, –0.295 4.962, –0.514
4 4.748, 0.792 6.635, –0.004 4.962, –0.514
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