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This paper presents a geometric constraints driven approach to unified kinematic simula-
tion of n-bar planar and spherical linkage mechanisms consisting of both revolute and
prismatic joints. Generalized constraint equations using point, line, and plane coordinates
have been proposed which unify simulation of planar and spherical linkages and are
demonstrably scalable to spatial mechanisms. As opposed to some of the existing
approaches, which seek to derive loop-closure equations for each type of mechanism sepa-
rately, we have shown that the simulation can be made simpler and more efficient by using
unified version of the geometric constraints on joints and links. This is facilitated using
homogeneous coordinates and constraints on geometric primitives, such as point, line,
and plane. Furthermore, the approach enables simpler programming, real-time computa-
tion, and ability to handle any type of planar and spherical mechanism. This work facilitates
creation of practical and intuitive design tools for mechanism designers.
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1 Introduction
Kinematic simulation of a mechanism requires calculation of the

position and orientation of all of its constituent links during its
entire range of motion. Simulation methodologies can be broadly
classified into three categories: graphical, analytical, and numerical
[1]. The graphical analysis method is based on dyadic decomposi-
tion, i.e., identification of four-bar loops in mechanisms [2].
Although this approach is prominently used in simulation packages
like Linkages [3] and PMKS [4], its limitations are well known [5],
e.g., they are unable to handle complex mechanisms like a double
butterfly mechanism. Analytical methods involve solving a loop
closure constraint-based system of non-linear equations [6]. Most
analytical methods use the polynomial continuation method [7,8],
elimination method, or Grobner bases [9] to solve the simulation
problem. These methods are able to find all the possible assembly
configurations of a given mechanism. However, they are not
general in nature since the motion equations need to be derived
for each type of mechanism separately. As a result, these
approaches cannot be used to simulate n-bar planar or spherical
mechanisms without manually deriving equations on a case-by-case
basis.
Numerical simulation methods are iterative in nature and can

handle extremely complex mechanism [10,11]. They use numerical
methods such as the Newton–Raphson method to solve the system
of non-linear equations for one solution only instead of all possible
ones [12]. These methods accept the mechanism joints and link
information as inputs. Subsequently, the algorithm repeatedly
solves the finite displacement problem, i.e., the input link is itera-
tively moved with finite displacement, and consequently, positions
of remaining links are calculated. As a result, the entire range of
motion for the specified mechanism is calculated.

Hernández and Petuya have proposed a geometrical-iterative
method that performs better than Newton–Rhapson method [13].
However, the approach is limited to n-bar planar mechanism with
revolute joints only. Radhakrishnan and Campbell [14] have
created a computational tool for planar mechanism, which carries
out position analysis of planar mechanisms using a geometrically
iterative algorithm. However, due to the use of dyadic decomposi-
tion, it shares the limitations of graphical methods and is limited to
the planar mechanisms.
Commercial CAD software such as AUTODESK INVENTOR, SOLID-

WORKS, ADAMS, etc. solve differential-algebraic equations numeri-
cally to provide multibody simulation capability [15–17].2
However, their use is more prominent during detail design stage
rather than the conceptual design stage. Creation of feature-based
assembly of planar and spherical mechanisms and initializing con-
straints on these systems is a nontrivial task. Changing the type of
joints or the number of links for a mechanism is also more involved
than carrying out the same operation on purely kinematic simulators
like PMKS [4]. Additionally, their solvers model the motion
problem as a set of coupled differential and algebraic equations.
This type of model is more suited for dynamic simulations rather
than kinematic simulations, which involves purely algebraic con-
straints. Also, the algebraic equations for commercial softwares
are modeled using reference point representation that leads to
more number of constraints when compared with other representa-
tions. Thus, use of these softwares for concept design is not ideal.
SAM and GIM are two more packages that support n-bar simulation
for planar linkages with both revolute and prismatic joints [18].3

Furlong et al. [19] have demonstrated a virtual reality environment
for simulating spherical four-bar mechanisms, and in the academic
domain, SPHINX, ISIS, and OSIRIS are softwares that enable the analysis
and synthesis of spherical mechanisms [20–22].
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However, currently, there are no approaches that unify n-bar
planar and spherical mechanism analysis and can be demonstrated
to more complex linkage systems. The proposed approach hopes
to bridge this gap and augment the capability of pure kinematic
design systems like MotionGen [23]. In this paper, planar and
spherical mechanisms are represented as a collection of geometric
constraints spanned by points, lines, and planes. The geometric
mechanism representation enables the design of unified constraint
equations that are easily programmed. As a result, a simple gener-
alized real-time framework for mechanism simulation is achieved.
Our previous work on mechanism synthesis problems includes

the creation of geometric constraint equations for four-bar mecha-
nisms with revolute or prismatic joints [24–28]. In Ref. [29], we
have demonstrated an algebraic fitting-based approach in the
space of planar quaternions to simulate planar four-bar linkages.
However, that approach does not scale for more complex planar
or spherical linkages. In this paper, we show that by using homo-
geneous coordinates, we can derive unified geometric constraint
equations for both planar and spherical linkages, which simplifies
the simulation without resorting to calculations for individual
types of mechanisms. The rigidity constraints imposed by the
links are modeled as simple geometric constraints using points,
lines and planes. Once the mechanism is specified, the solver
proceeds with iteratively perturbing the input and solving the
constraints for other links. To the best of authors’ knowledge, this
work is the first attempt at using a point-line-plane mechanism
representation and presenting unified geometric constraints for
simulation.
The major intellectual contributions of this paper can be summa-

rized as (1) presenting generalized constraint equations for planar
and spherical mechanisms using point-line-plane representation
and (2) enabling real-time simulation of n-bar planar or spherical
mechanisms.
Rest of the paper is organized as follows. Section 2 discusses the

representation and constraints required to describe the motion of a
general planar and spherical mechanism. Section 3 demonstrates
the algorithm required to simulate a mechanism using the iterative
numerical approach. Finally, in Sec. 4, we present a few examples
to demonstrate the use of proposed algorithm.

2 Mechanism Representation and Constraints
Selection of an apt mechanism representation and constraints

is important as it has a profound effect on algorithm’s simplicity
and efficiency. Conventionally, a multibody system has been spec-
ified using multiple representations, namely: relative coordinates,
reference point coordinates, and natural coordinates [10]. Relative
coordinates are based on parameters specifying one link relative
to another; reference point coordinates are based on specifying
absolute position of each link independently; while the natural
coordinates are based on each link being specified by two points.
Using relative coordinates enables a scalable representation while
reference point coordinates tend to be more computationally

efficient. Natural coordinates provide a compromise between the
two approaches in terms of simplicity and efficiency. Most commer-
cial softwares use reference point coordinate representation that
usually leads to maximum number of constraint equations and sub-
sequently high computation time.
Figure 1 shows an RRPR (R: Revolute, P: Prismatic) four-bar

mechanism and its specification using different representations.
For the relative coordinate representation, there are three unknown
coordinates, i.e., ψ1, ψ2, L3. For the reference point coordinate rep-
resentation, the mechanism has nine unknown variables, i.e., loca-
tion and orientation of each link xi, yi, ψi. Similarly, for the natural
coordinate representation, there are six unknown variables namely
x1, y1, x2, y2, x3, y3. Since the four-bar mechanisms are a single
degree-of-freedom mechanisms, each of the representation requires
two, eight, and five constraint equations, respectively, to fully
define the motion. In this paper, we derive unified constraint equa-
tions for all types of planar and spherical linkages consisting of
both revolute and prismatic joints. We use homogeneous coordi-
nates to write geometric constraints on points, lines, and planes.
For example, our representation for the shown RRPR mechanism
will require using four unknown point and line coordinates,
i.e., x1, y1, a2, b2 since we can set homogenizing factors z1= 1
and c2= 1 without any loss in generality. Such a representation
would keep the number of unknown variables smaller while also
enabling construction of simpler geometric constraint equations.
Computational efficiency aside, this representation also naturally
maps to the geometric constraints, which for the shown RRPR
mechanism is a circle-constraint on the moving pivot and a line-
constraint on the fixed pivot of the RP dyad. It is well known that
the time complexity of multidimensional Newton–Raphson
method, which is used in this paper, is at-least O(n2) for a single
iteration where n is the number of unknowns in state variable
[11]. This is a direct consequence of a dense Jacobian matrix
having n2 elements that need to be calculated after every iteration.
Thus, more unknowns result in needing to calculate larger Jacobian
matrices, which is computationally expensive.
Planar mechanisms can be uniquely specified using their joint

and link data. A joint can be prismatic or revolute, which naturally
associates with points and lines, respectively. We use homogeneous
coordinates to represent both points and lines. Thus, a point P is
given by homogeneous coordinates (x, y, z) whose Affine coordi-
nates are given as (x/z, y/z), while a line L is also represented
using homogeneous coordinates (a, b, c), where equation of the
line passing through the point P in the projective plane is given
by ax+ by+ cz= 0. Depending on the constraint being expressed,
this line can be fixed or floating in the plane. A link can be repre-
sented by a subset of joints. The link can be binary, ternary, or
n-ary depending on the number of joints it contains. An example
six-bar planar mechanism is displayed in Fig. 2. Its joints are repre-
sented as points and lines while its links are defined as a group of
joints as shown in Table 1.
Similarly, spherical mechanisms can also consist of revolute and

prismatic joints. A spherical prismatic joint constrains the link
movement along a circular arc instead of a line. We represent a

Fig. 1 Different types of mechanism representations: (a) relative coordinates, (b) reference point coordinates,
(c) natural coordinates, and (d) proposed coordinates
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spherical revolute joint as a point P in terms of its homogeneous
coordinates (x, y, z, w) with respect to the center of the unit
sphere such that its Affine coordinates are (x/w, y/w, z/w). A
spherical prismatic joint is defined as a plane Pl : (a, b, c, 0)
passing through the center of the sphere and is given by the equation
ax+ by+ cz= 0. The intersection of the plane and the unit sphere
defines the great circle along which the constituent links are
constrained to move for a spherical prismatic joint. Similar to the
lines for planar mechanisms, this plane can be fixed or moving
depending on the geometric constraint being expressed. An
example RRPR spherical mechanism is displayed in Fig. 3. Its
joints are represented as points and planes while its links are
defined as a group of joints as shown in Table 2.
During the motion, a mechanism is subjected to a set of con-

straints imposed by the rigidity of its links. Thus, to simulate a
mechanism, these constraint equations need to be formulated. For
planar and spherical mechanisms, modeling three constraint equa-
tions are sufficient for simulation. We propose a unique constraint
equation for each of the binary links RR, RP, PR, and PP. But,
we will see that all of these constraints can be expressed in a
single equation. Any link with more than two joints can easily be
reduced to an equivalent collection of binary links. For example,
a ternary link can be treated as three binary links. Thus, these con-
straints can successfully be used to enforce the rigidity of any link in
a general mechanism. Figures 4 and 5 show different planar and
spherical binary links, which are building blocks for any planar
and spherical mechanism and are discussed below.
The first general constraint enforces the rigidity of a spherical

binary link with two revolute joints represented by two homo-
geneous point coordinates of the fixed point (a1, a2, a3, a4) and floating point (b1, b2, b3, b4), where a4 and b4 are homogenizing

factors. The RR link imposes the constraint that the distance
between two points remains constant, i.e., dist(R1, R2)= r in Figs. 4
and 5. The constraint equation is given as

CS,RR: 2a1b1 + 2a2b2 + 2a3b3 + a0b4 = a4
b21 + b22 + b23

b4

( )
(1)

Table 1 Joint and link data for Stephenson-II linkage using
Affine coordinates

Joint Type Coordinates

J1,input Revolute 0, −1
J2 Revolute 1, 0.5
J3 Prismatic −0.17, 0.98, −4.28
J4 Revolute 3.25, 1.4
J5 Revolute 7.72, 1.44
J6 Revolute 11.66, 4.17
J7 Prismatic 0, 1, 1.24
J8 Coupler point 6, −2

Link Constituent joints

L1 J1, J2
L2 J2, J3, J4
L3 J3, J6
L4 J4, J5, J8
L5 J5, J6, J7
L6,ground J1, J7

Fig. 2 Planar Stephenson-II six-bar linkage

Fig. 3 Spherical RRPR four-bar linkage

Table 2 Joint and link data for spherical RRPR linkage using
Affine coordinates; the coordinates are given with respect to
the fixed coordinate frame located at the center of the
reference sphere

Joint Type Coordinates

J1,input Revolute 0.94, 0.24, 0.24
J2 Revolute 0.80, 0.27, 0.53
J3 Prismatic 0.68, −0.68, 0.26
J4 Revolute −0.38, 0.76, 0.53
J5 Coupler point 0.50, −0.21, 0.84

Link Constituent joints

L1 J1, J2
L2 J2, J3, J5
L3 J3, J4
L4,ground J1, J4

Fig. 4 Types of binary planar links: (a) RR link, (b) RP and PR
link, and (c) PP link
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where a0 is given as

a0 = a4r
2 −

a21 + a22 + a23
a4

Here, r is the radius of the sphere formed by the RR link with the
center given by (a1, a2, a3, a4). When the z-coordinate is set to
zero, the constraint equation degenerates into the one for a planar
RR link. The constraint equation for a planar RR link represented
by points (a1, a2, a4) and (b1, b2, b4) is thus given as

CP,RR: 2a1b1 + 2a2b2 + a0b4 = a4
b21 + b22

b4

( )
(2)

where a0 is given as

a0 = a4r
2 −

a21 + a22
a4

The second general constraint enforces the rigidity of a binary link
with one prismatic and one revolute joint represented by a homoge-
neous point and a plane given by (a1, a2, a3, a4) and (L1, L2, L3, L4),
respectively. An RP or PR link imposes the constraint that the
distance between a point and a line (planar case) or a point and a
plane (spherical case) is constant, i.e., dist(R, P)= d in Figs. 4
and 5. RP and PR links are inversions of each other and are
expressed by the same constraint. The general constraint equation
for a spherical RP link is given as

CS,RP: a1L1 + a2L2 + a3L3 + a4L4 = da4

��������������
L21 + L22 + L23

√
(3)

where d is the signed perpendicular distance between the revolute
joint and prismatic joint. For spherical linkages, the prismatic
plane always passes through the origin, i.e., L4= 0. Thus, the sphe-
rical RP link constraint equation reduces to

CS,RP: a1L1 + a2L2 + a3L3 = da4

��������������
L21 + L22 + L23

√
(4)

When the z-coordinates is set to zero, the general constraint equa-
tion degenerates into a planar case. Thus, constraint equation for
a planar RP or PR link represented by a point (a1, a2, a4) and a
line (L1, L2, L4) is given as

CP,RP: a1L1 + a2L2 + a4L4 = da4

���������
L21 + L22

√
(5)

When the perpendicular distance d becomes zero, the equation
describes a line passing through a point, i.e., constraint equation of
PR or RP links. This is usually the case with the PR links where
the moving joint point is constrained to be on the fixed line of the
prismatic joint and in case of the RP link where the moving line is
constrained to pass through the point of the fixed joint.
Finally, the third constraint enforces the rigidity of a spherical

binary link with two prismatic joints represented as (L1, L2, L3, 0)
and (M1, M2, M3, 0). For the PP link, the angle between two
lines (planar case) or two planes (spherical case) remains constant,
i.e., angle(P1, P2)= cos −1(k) in Figs. 4 and 5. The constraint equa-
tion is given as

CS,PP: L1M1 + L2M2 + L3M3 = k
��������������
L21 + L22 + L23

√ �����������������
M2

1 +M2
2 +M2

3

√
(6)

where k represents the cosine of angle between two prismatic
joints. Similarly, for planar PP binary link represented by two
lines (L1, L2, L4) and (M1, M2, M4), the constraint equation degen-
erates to

CP,PP: L1M1 + L2M2 = k
���������
L21 + L22

√ ����������
M2

1 +M2
2

√
(7)

When the two prismatic joints on a binary link are defined as two
parallel lines, a degree-of-freedom is added to the mechanism.
This situation is impractical and will not been considered further
in this paper.
It can be seen that Eqs. (2), (4)–(7) are all degenerate case of the

Eq. (1). In the projective plane for the planar geometric constraints,
the lines and points are dual to each other; thus, their meanings
can be interchanged without changing the underlying structure
of the equations. In the projective three-space for the spherical
constraints, the points and planes are dual to each other and thus
their meanings can be interchanged. Thus, Eq. (1) is the single
equation that unifies all the geometric constraints associated with
all types of links for both planar and spherical mechanisms. This
facilitates creation of the following metrics for computation:
(1) distance between two points in space, (2) perpendicular dis-
tance between a point and a plane, and (3) angle between two
planes.
For links with prismatic joints, the line or plane coordinates are

homogeneous in nature, i.e., multiplying a non-zero scalar λ to pris-
matic coordinates (L1, L2, L3) does not change the coordinates.
Thus, the magnitude of this vector can be fixed to unity without
losing generality and another constraint can be written as

CP: L21 + L22 + L23 − 1 = 0 (8)

For spherical mechanisms, an additional geometric constraint is
imposed on the joints due to the spherical nature of the motion. It
is assumed that all the revolute joints move on the unit sphere
that leads to the constraint

CS,R: a21 + a22 + a23 − 1 = 0 (9)

where (a1, a2, a3) are the coordinates of any revolute joint on a sphe-
rical mechanism. Thus, the rigidity constraints described in Eqs. (1),
(2), (4)–(9) are sufficient to uniquely determine the unknown coor-
dinates of a n-bar planar or spherical mechanism. This concludes
our discussion on representation and constraints for a generalized
planar or spherical mechanism.

3 Solving Constraint Equations
In this section, we discuss the algorithmic steps required to solve

the kinematic simulation problem. The general approach is to iter-
atively perturb the input links by a finite displacement and find
the new position of the mechanism.

3.1 Input Link Perturbation. The simulation process involves
iteratively perturbing the input link by a finite displacement.
Depending on the actuating joint being revolute or prismatic, the
displacement could be translation or rotational in nature. In this
paper, we restrict ourselves to consider actuation at the fixed
joints. The relations governing the motion of input link are
derived in this subsection.
For a perturbed RR link with the actuating fixed joint (x1, y1) and

moving joint (x2, y2), the new coordinates of moving revolute joint
can be given as

X2

Y2
1

⎡
⎣

⎤
⎦ = [T]−1[R][T]

x2
y2
1

⎡
⎣

⎤
⎦ (10)

Fig. 5 Types of binary spherical links: (a) RR link, (b) RP and PR
link, and (c) PP link
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where

[Rx] =

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

⎡
⎢⎣

⎤
⎥⎦ and [T] =

1 0 −x1
0 1 −y1
0 0 1

⎡
⎢⎣

⎤
⎥⎦
(11)

In the above equation, (X2, Y2) represent the moving joint after
perturbation and θ is the angle through which the input link is
perturbed.
For a perturbed RP link with the actuating fixed joint (x1, y1) and

moving joint (a, b, c), the new coordinates of moving line represent-
ing the prismatic joint can be given as

A
B
C

⎡
⎣

⎤
⎦ = ([T]−1[R][T])−T

a
b
c

⎡
⎣

⎤
⎦ (12)

where (A, B, C) are the moving line coordinates after perturbation,
and T and Rx are the translation and rotation matrices as described
in Eq. (11).
For a planar mechanism with the actuation being at prismatic

joint, input link perturbation causes translation of other joints on
the input link. For a perturbed PR link with the actuating joint
(a, b, c) and moving joint (x, y), the new coordinates of translating
revolute joint can be given as

X
Y
1

⎡
⎣

⎤
⎦ =

b��������
a2 + b2

√ d

−a��������
a2 + b2

√ d

0

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦
+

x
y
1

⎡
⎣

⎤
⎦ (13)

where (X, Y ) are the moving joint coordinates after perturbation and
d is the distance through which the prismatic joint is moved along
the fixed line. It can be seen that in Eq. (13), the actuating line coor-
dinate c does not affect the new position of moving joint coordinates
as new position only depends on direction cosines.
For a perturbed PP link with the actuating fixed joint (a1, b1, c1)

and moving joint (a2, b2, c2), the new coordinates of translating
prismatic joint can be given as

A2

B2

C2

⎡
⎣

⎤
⎦ =

0
0

a1b2 − a2b1��������
a21 + b21

√ d

⎡
⎢⎢⎣

⎤
⎥⎥⎦ +

a2
b2
c2

⎡
⎣

⎤
⎦ (14)

where (A2, B2, C2) are the moving prismatic joint coordinates after
perturbation and d is the distance through which the input link has
been perturbed.
Similarly, relationships determining the values of perturbed joints

for spherical mechanisms can also be calculated. For spherical
mechanisms with a fixed revolute actuating joint, the moving
joints rotate around the axis passing through the actuation joint
and the centre of sphere. The transformation matrix which rotates
spherical link around an axis passing through the centre of sphere
(0, 0, 0) and an arbitrary point on surface of the sphere (l, m, n)
is given by

[R](l,m,n) = [Rx]
−1[Ry]

−1[Rz][Ry][Rx] (15)

[Rx] =

1 0 0

0
n���������

m2 + n2
√ −m���������

m2 + n2
√

0
m���������

m2 + n2
√ n���������

m2 + n2
√

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

(16)

[Ry] =

���������
m2 + n2

√
0 −l

0 1 0
l 0

���������
m2 + n2

√

⎡
⎣

⎤
⎦ (17)

[Rz] =
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

⎡
⎣

⎤
⎦ (18)

where Rx, Ry, and Rz are the rotation matrix around x-, y-, and
z-axis and θ is the angle by which the link is rotated around the axis.
Using Eq. (15), the new coordinates of the moving joints of a

perturbed spherical RR link can be given as

X2

Y2
Z2

⎡
⎣

⎤
⎦ = [R](x1 ,y1 ,z1)

x2
y2
z2

⎡
⎣

⎤
⎦ (19)

where (x1, y1, z1) are the fixed joint coordinates, (x2, y2, z2) are the
moving joint coordinates before perturbation, and (X2, Y2, Z2) are
the moving joint coordinates after perturbation.
For a spherical RP link with a fixed revolute joint, the coordinates

of moving prismatic joint can be given as

A
B
C

⎡
⎣

⎤
⎦ = [R](x,y,z)

a
b
c

⎡
⎣

⎤
⎦ (20)

where (x, y, z) are the fixed joint coordinates, (a, b, c) are the moving
joint coordinates before perturbation, (A, B, C) are the moving joint
coordinates after perturbation, and as described above.
When the actuation joint is prismatic in nature, the moving joints

translate on the intersection of a parallel plane and the unit sphere.
This motion can also be characterized as rotation around an axis
which passes through the centre of the sphere and “pole” of the pris-
matic joint. The poles of a great circle are defined as intersection of
two circles perpendicular to the initial circle. If a spherical prismatic
joint is defined as a plane (a, b, c), its pole coordinates are also given
as (a, b, c). Thus, for a spherical RP link with fixed prismatic joint,
the coordinates of moving revolute joint can be given as rotation,
i.e.,

X
Y
Z

⎡
⎣

⎤
⎦ = [R](a,b,c)

x
y
z

⎡
⎣

⎤
⎦ (21)

where (a, b, c) are the fixed prismatic joint coordinates, (x, y, z)
are the moving revolute joint coordinates before perturbation
and (X, Y, Z ) are the moving revolute joint coordinates after
perturbation.
For a spherical PP link with a fixed prismatic joint, the coordi-

nates of a moving prismatic joint can be given as

A2

B2

C2

⎡
⎣

⎤
⎦ = [R](a1,b1 ,c1)

a2
b2
c2

⎡
⎣

⎤
⎦ (22)

where (a1, b1, c1) are the coordinates of fixed prismatic joint, (a2, b2,
c2) are moving prismatic joint coordinates before perturbation,
and (A2, B2, C2) are moving prismatic joint coordinates after
perturbation.
With these expressions, we can successfully calculate the loca-

tion of input link after imparting it a discrete perturbation. The
next step is to find the coordinates of all the other unknown joint
coordinates that are compatible with the rigidity constraints
imposed on the mechanism during simulation.

3.2 Numerical Non-linear System of Equation Solving. For
any multi-body system, the position problem is always based on
solving a system of constraint equations. This set of equations
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can be represented as

Φ(q) = 0 (23)

where q is the state vector that consists of all the unknown coordi-
nates. The well-known Newton-Raphson method can be used to
solve this non-linear system of equation. It is featured by quadratic
convergence in the neighborhood of the solution. Since the input
link is perturbed by a small finite displacement, the previous state
of mechanism serves as a good initial approximation. The number
of constraint equations should be equal to or greater than the
number of unknowns for this approach to work. For planar and
spherical mechanisms, it is always possible to satisfy this criterion
using the constraints outlined in section.
The iterative algorithm followed can be defined as

qi+1 = qi − [J−1(qi)]Φ(qi) (24)

where qi is the state vector at ith iteration, Φ(qi) is the vector of
residuals at q= qi, and [J−1(qi)] is the inverse of Jacobian matrix
evaluated at q=qi. The Jacobian matrix is of the following form

[J(q)] =

∂ϕ1

∂q1

∂ϕ1

∂q2
· · · ∂ϕ1

∂qn
∂ϕ2

∂q1

∂ϕ2

∂q2
· · · ∂ϕ2

∂qn

· · · · · · · · · · · ·
∂ϕm

∂q1

∂ϕm

∂q2
· · · ∂ϕm

∂qn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

where m is the number of constraints and n is the number of
unknown coordinates. Thus to calculate the Jacobian matrix, rela-
tions describing the first-order partial derivatives of constraint
equations are required.
The first-order partial derivatives for spherical RR constraint

given in Eq. (1) can be given as follows:

∂CRR

∂a1
= 2(a1 − b1) (26)

∂CRR

∂a2
= 2(a2 − b2) (27)

∂CRR

∂a3
= 2(a3 − b3) (28)

Here, the homogeneous point coordinate a0 and b4 has been
assumed as unity without loss in generality. For planar RR link,
only ∂CRR/∂a1 and ∂CRR/∂a2 exists.
The first-order partial derivatives for spherical RP constraint

given in Eq. (4) can be given as follows:

∂CS,RP

∂a1
= L1,

∂CS,RP

∂a2
= L2,

∂CS,RP

∂a3
= L3 (29)

∂CS,RP

∂L1
= a1 −

dL1��������������
L21 + L22 + L23

√ (30)

∂CS,RP

∂L2
= a2 −

dL2��������������
L21 + L22 + L23

√ (31)

∂CS,RP

∂L3
= a3 −

dL3��������������
L21 + L22 + L23

√ (32)

Here, the homogeneous point coordinate a0 has been assumed as
unity without loss in generality. For planar RR constraint given in

Eq. (5), the first-order differentials are

∂CP,RP

∂a1
= L1,

∂CP,RP

∂a2
= L2 (33)

∂CP,RP

∂L1
= a1 −

dL1���������
L21 + L22

√ (34)

∂CP,RP

∂L2
= a2 −

dL2���������
L21 + L22

√ (35)

∂CP,RP

∂L4
= 1 (36)

The first-order partial derivatives for spherical PP constraint
given in Eq. (6) can be given as follows:

∂CS,PP

∂L1
=M1 −

kL1
�����������������
M2

1 +M2
2 +M2

3

√
L21 + L22 + L23

(37)

∂CS,PP

∂L2
=M2 −

kL2
�����������������
M2

1 +M2
2 +M2

3

√
L21 + L22 + L23

(38)

∂CS,PP

∂L3
=M3 −

kL3
�����������������
M2

1 +M2
2 +M2

3

√
L21 + L22 + L23

(39)

These equations degenerate to planar case when L3= 0 and M3= 0
and ∂CP,PP/∂L4= 0.
The first-order partial derivatives for homogeneous Prismatic

joint constraint given in Eq. (8) can be given as follows:

∂CP

∂L1
= 2L1,

∂CP

∂L2
= 2L2,

∂CP

∂L3
= 2L3 (40)

The first-order partial derivatives for unit circle revolute joint
constraint given in Eq. (9) can be given as follows:

∂CS,R

∂a1
= 2a1,

∂CS,R

∂a2
= 2a2,

∂CS,R

∂a3
= 2a3 (41)

To automate the calculation of residual vector Φ(qi) and the
Jacobian matrix [J(qi)], the constraints are handled in a sequential
manner. While creating the residual vector in our implementation,
first the rigidity constraints for each link are calculated and then
the constraints for joints are calculated. Similarly, the Jacobian
matrix is created in a column-first manner, i.e., all the partial dif-
ferential equations with respect to an unknown state variable are
calculated before progressing to the next variable. The outlined
method is just one way of calculating Φ(qi) and [J(qi)] since their
values are independent of the sequence adopted to calculate each
element.
Thus, using the constraint equations and their first-order partial

derivatives, it is possible to solve iteratively for the solution using
Newton–Raphson method. The iterations are continued until a solu-
tion within desired accuracy is calculated.
For some input link perturbations, the Newton–Raphson method

might fail to converge even after many iterations. In these instances,
there does not exist a mechanism state which fulfills all the con-
straint equations. As a result, this input perturbation is outside the
possible limits of motion of mechanism.
Thus, by iteratively perturbing the input link and solving the

constraints for other joint coordinates, we are able to simulate
any general planar or spherical mechanism. Numerous techniques
exist that can improve the convergence and efficiency of the
Newton–Raphson method. However, the basic method suffices to
achieve real-time simulation. The complete algorithm has been
described in
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Algorithm 1. Algorithm for planar and spherical mechanism
simulation

Input: Initial mechanism configuration
1 Calculate initial rigidity metric for each link
2 for range of input link motion do
3 Perturb input link
4 for max iterations do
5 Calculate the constraint residual
6 if residual ≤ ɛ then
7 Solution found
8 break

9 end
10 Calculate the Jacobian matrix
11 Calculate predicted unknown joint coordinates
12 end
13 if solution found then
14 Store as subsequent mechanism state
15 else
16 Motion limit reached
17 end
18 Animate the range of motion

Output: Mechanism simulation

4 Examples
This section presents sample examples to demonstrate the use of

proposed algorithm for mechanism simulation. The simulation has
been carried out in MATLAB on a PC running Core i5-7300 at 2.6
GHz with 8GB RAM. The simulation is carried out within
seconds for residual value of 1.0e− 8. Each closed-loop output
curve is made up of 180 points while open-loop curves have less
than 180. Each point corresponds to 2π/180 radian or units input
perturbations.

4.1 Speed Comparison With a Commercial Software. To
compare the speed of commercially available CAD systems and
proposed algorithm, a planar four-bar crank rocker mechanism
with revolute joints is modeled and simulated. Autodesk Inventor
2020 with educational license is used as reference commercial
CAD system. Simulation is performed for 180 time-steps with one-
degree input link perturbation for each time-step. The simulation
takes 5 s to complete Inventor while it finishes in 1.4 s when the pro-
posed algorithm is used. Thus, even for a simple mechanism, there
is a significant speed difference between the commercial solvers and
proposed methodology.

4.2 Planar Stephenson-II Linkage. A planar Stephenson-II
six-bar linkage is simulated in this example. This linkage does
not have a four-bar linkage and proves to be challenging to simulate
using dyadic decomposition based approaches. However, our
approach handles these non-dyadic mechanisms without issues.
The six-bar mechanism is displayed in Fig. 2, and its joint and

link data are given in Table 1. The mechanism has J1, J7 as the
fixed joints, J2 as the perturbed joint and J3, J4, J5, J6, J8 as the
unknown joints defining the 11-dimensional state vector. The mech-
anism consists of ten rigidity constraint equations and one homoge-
neous coordinate equation for prismatic joint. The simulation
algorithm successfully solves these constraints and plots the trajec-
tory of the coupler point J8 as shown in Fig. 2. The run-time of this
simulation was 3.79 s.

4.3 Planar-Modified Theo Jansen Linkage. In this example,
a planar-modified Theo Jansen linkage with one of its revolute
joints replaced by a floating prismatic joints is simulated. The eight-
bar mechanism is displayed in Fig. 6 and its joint and link data is
given in Table 3. J1, J5 are the fixed joints, J2 is the perturbed

joint and the state vector consists coordinates of J3, J4, J6, J7, J8.
This results in a 11-dimensional state vector. Ten rigidity constraint
equations for links and one homogeneous coordinate equation for
prismatic joint are available for this mechanism. The simulation
algorithm plots the trajectory of the coupler point J8 as shown in
Fig. 6. Note, the length of stride for this modified mechanism is
larger than that of the conventional Theo Jansen mechanism
which has revolute joints only. As a result, this mechanism is a pro-
spective candidate for walking robots. The run-time of this simula-
tion was 3.81 s.

4.4 Spherical RRPR Mechanism. This example presents the
simulation of a spherical RRPR mechanism which is the spherical
analog of the Whitworth quick-return mechanism. The four-bar
mechanism is displayed in Fig. 3, and its joint and link data are
given in Table 2. The mechanism has J1, J4 as the fixed joints, J2
as the perturbed joint, and J3, J5 as the unknown joints defining
the six-dimensional state vector. The mechanism consists of four
rigidity constraint equations for output and coupler links which

Fig. 6 Planar-modified Theo Jansen with floating prismatic joint

Table 3 Joint and link data for Modified Theo Jansen linkage

Joint Coordinates

J1,input 2.77, 2.31
J2 2.17, 3.33
J3 −0.50, 0.87, −4.80
J4 0.66, −1.3
J5 −0.22, 1.72
J6 −3.17, 0.66
J7 −2.08, −2.24
J8 2.54, −4.64

Link Constituent joints

L1 J1, J2
L2 J2, J3
L3 J2, J4
L4 J3, J5, J6
L5 J5, J4
L6 J6, J7
L7 J4, J7, J8
L8,ground J1, J5
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can be described using Eqs. (1) and (4). Also, one unit sphere equa-
tion for revolute joint using Eq. (9) and one homogeneous coordi-
nate equation for prismatic joint using Eq. (8) can be written.
Once the simulation is completed, the trajectory of coupler point
J5 can be plotted as shown in Fig. 3. The run-time of this simulation
was 1.49 s.

4.5 Spherical Watt-I Linkage. In this example, a spherical
Watt-I six-bar linkage with prismatic input joint is simulated.
Spherical Watt I type linkages have been used to design door
hinges for spatial movement. The six-bar mechanism is shown in
Fig. 7, and its link and joint data are given in Table 4. From the
data, it is known that J1, J6 are the fixed joints, J2, J3 are the per-
turbed joints, and J4, J5, J7, J8 are the unknown joints representing
the 12-dimensional state vector. The mechanism can be described
using eight rigidity constraints for links and four unit circle con-
straints. Perturbing the input link along the input prismatic joint
results in the motion of coupler point J8 as shown in Fig. 7. The
run-time of this simulation was 3.33 s.

4.6 Spatial 5-SS Mechanism. In this section, we demonstrate
the scalability of proposed algorithm to spatial mechanisms by

simulating a 5-SS platform linkage. A 5-SS mechanism consists
of five binary spherical-spherical (SS) links connected to a floating
coupler link on one end and the ground link on the other [30].
Although using the Grüebler criterion [2], the mobility of this mech-
anism is six, five of the rotational degrees for each binary link are
redundant, and therefore, 5-SS platform linkage is a one
degree-of-freedom mechanism.
An example 5-SS mechanism is displayed in Fig. 8 and its joint

and link data is given in Table. 5. Since the input link perturbation
approaches outlined in Sec. 3.1 only cover revolute and prismatic

Fig. 7 Spherical Watt-I six-bar linkage

Table 4 Joint and Link data for Spherical RRPR linkage

Joint Coordinates

J1,input 0, 0, 1
J2 0.93, 0, 0.37
J3 0.85, −0.17, 0.51
J4 0.70, 0.70, 0.14
J5 0.73, 0.49, 0.49
J6 0.81, 0.41, −0.41
J7 0.48, −0.10, 0.87
J8 0.49, 0.49, 0.73

Link Constituent joints

L1 J1, J2, J3
L2 J2, J4, J5
L3 J4, J6
L4 J3, J7
L5 J5, J7, J8
L6,ground J1, J6

Fig. 8 Spatial 5-SS platform linkage

Table 5 Joint and link data for spatial 5-SS platform linkage

Joint Coordinates

J1 −7.2, −5.29, 7.87
J2 5.72, −0.71, −8.26
J3 −8.75, −4.60, 5.49
J4 −10.00, −8.72, 6.09
J5 −3.88, 6.61, 8.91
J6 −6.61, −9.99, 3.93
J7 8.19, −9.05, 6.07
J8 7.84, −5.73, −0.62
J9 4.15, −0.48, −2.04
J10 −0.97, −9.04, 1.92
J11 2.20, −7.17, 5.36

Link Constituent joints

L1 J1, J6
L2 J2, J7
L3 J3, J8
L4 J4, J9
L5 J5, J10
L6 J6, J7, J8, J9, J10, J11
L7,ground J1, J2, J3, J4, J5
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joints, a new approach is needed for spherical input links. We attach
a linear actuator between J1 and J7 to actuate the mechanism [30].
This results in the mechanism having J1, J2, J3, J4, J5 as fixed joints
and J6, J7, J8, J9, J10, J11 as the unknown joints defining the
18-dimensional state vector. Five rigidity constraints for binary
links, 12 independent rigidity constraints for coupler and one addi-
tional constraint for input actuator length is available for this mech-
anism. All these constraints are modeled using Eq. (1) and the
simulation is carried out to generate a spatial trajectory of coupler
point J11. The input prismatic link is perturbed by 0.01 units and
run-time of this simulation was 0.28 s.

5 Conclusion
In this paper, we have presented unified equations for motion

simulation of planar and spherical n-bar mechanisms and an effi-
cient algorithm for computation to enable real-time, interactive
simulation. The approach is general and uses simple geometric
primitives, such as point, line, and planes to represent the con-
straints inherent in mechanisms. A 5-SS mechanism is simulated
to demonstrate the scalability of the proposed approach to spatial
mechanisms. Once the mechanism is simulated and the path of
coupler point determined, velocity and acceleration curves can
easily be determined using numerical differentiation. Future
research would involve finding appropriate representation and
rigidity constraints for cylindrical and helical joints to further
unify spatial synthesis.
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