
Shashank Sharma
Computer-Aided Design and Innovation Lab,

Department of Mechanical Engineering,
Stony Brook University,

Stony Brook, NY 11794-2300
e-mail: shashank.sharma.1991@outlook.com

Anurag Purwar1
Computer-Aided Design and Innovation Lab,

Department of Mechanical Engineering,
Stony Brook University,

Stony Brook, NY 11794-2300
e-mail: anurag.purwar@stonybrook.edu

A Machine Learning Approach to
Solve the Alt–Burmester Problem
for Synthesis of Defect-Free
Spatial Mechanisms
In this paper, we present a machine learning algorithm to synthesize defect-free single-
degree-of-freedom spatial mechanisms for the Alt–Burmester problem. The Alt–Burmester
problem is a generalization of a pure motion synthesis problem to include via path-points
with missing orientations. While much work has been done towards the synthesis of planar
and, to some extent, spherical mechanisms, the generation of mechanisms that are free of
circuit, branch, and order defects has proven to be a difficult task. This is even more chal-
lenging for spatial mechanisms, which can consist of a large number of circuits and
branches. Moreover, the Alt–Burmester problem makes solving such problems using an
analytical approach further demanding. In this paper, we present a novel machine learning
algorithm for solving the Alt–Burmester problem for spatial 5-SS platform mechanism using
a variational autoencoder (VAE) architecture. The VAE helps capture the relationship
between path and orientation properties of the motion of the 5-SS mechanisms, which
enables reformulating the Alt–Burmester problem into a pure motion synthesis problem.
The end goal is to produce defect-free spatial mechanism design solutions. While our
focus in this paper is on the 5-SS mechanisms, this approach can be scaled to any
single-degree-of-freedom spatial mechanisms. [DOI: 10.1115/1.4051913]

Keywords: artificial intelligence, mechanisms and robotics, computational synthesis,
computer-aided design, machine learning for engineering applications

1 Introduction
This paper is concerned with the Alt–Burmester problem, which

provides a set of pose and path-point (or position-) input data for the
floating link of a spatial mechanism. Here, a pose is defined as a
combination of position and orientation of the floating link and a
path-point is defined by position only. Traditionally, kinematic
synthesis of a mechanism has been classified and studied as the
path-, motion-, and function generation problems [1,2]. Path synth-
esis problems consider only path-point coordinates (xi, yi, zi) as
inputs while motion synthesis problems specify poses (xi, yi, zi,
αi, βi, γi), where (xi, yi, zi) are the coordinates of the origin of
the moving frame attached to the floating link and the angles
(αi, βi, γi) represent the orientation of the moving frame with
respect to a fixed frame. Thus, an Alt–Burmester problem can be
considered to be a special motion synthesis problem, where the ori-
entation information for a few poses is missing. The goal is to find
the dimensions of mechanisms for a given input of this type.
There exists a vast amount of literature on the path generation

problem for planar, spherical, and spatial mechanisms. Algebraic
methods for synthesis use techniques like complex number analysis
and displacement matrix methods to find analytical closed-form
solutions [1,3–8]. Optimization techniques attempt to minimize an
objective function and find mechanisms whose coupler traces the
best approximating motion curve [9–13]. Atlas approaches
explore the use of curve invariants like Fourier descriptors to
create and search a database of coupler curves [14,15]. Neural
network approaches have also been proposed for planar path synth-
esis [16,17]. Recently, Deshpande and Purwar have proposed

machine learning models using autoencoders to synthesize planar
mechanisms [18–20]. Chiang presented an exhaustive review of
the kinematics of spherical mechanisms [21]. Path generation of
spherical mechanisms has been carried out using numerical atlas
methods [22,23]. Premkumar et al. have proposed an optimization
solution for the synthesis of the RRSC and RRSS spatial mecha-
nisms [24,25]. Ananthasuresh and Kramer proposed the generalized
reduced gradient method of optimization for the synthesis of the
RSCR spatial mechanisms [26]. Jiménez et al. outlined a general-
ized constraint optimization technique [27]. Sun et al. created a
database using the Fourier series to compare curves and synthesized
RCCC spatial mechanisms [28]. Our previous work used machine
learning (ML) and database search for path synthesis of spatial
5-SS mechanisms [29].
Similarly, the motion synthesis of mechanisms is also a well-

researched topic. Kinematic mapping and algebraic fitting algo-
rithms have been used for motion synthesis of planar mechanisms
[30–34]. Generalizations of these approaches using analytical,
homotopy, or optimization algorithms have been proposed for both
spherical mechanisms [35–40] and spatial mechanisms [41–45].
However, the theoretical distinction between path and motion

synthesis often presented in the literature does not play well with
real-world problems. Many practical problems require a designer
to satisfy a combination of both path constraints and pose con-
straints. This happens when designers have information about a
few key poses but lack any knowledge of the orientation of some
path-points. In the absence of precise constraints on poses, this is
a more natural specification of the problem. Tong et al. [46]
solved the Alt–Burmester problems, which they named after
Alt’s [3] and Burmester’s [30] work on planar four-bar mechanisms
synthesis. Brake et al. [47] proposed a homotopy approach to
synthesize planar four-bar mechanisms for this problem.
Zimmerman [48] presented a geometric approach to find four-bar
solutions for the mixed synthesis problem. It is well-known that
the orientations of the coupler of a planar four-bar mechanism are

1Corresponding author.
Contributed by the Computers and Information Division of ASME for publication

in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript
received October 5, 2020; final manuscript received July 22, 2021; published online
October 13, 2021. Assoc. Editor: Matthew I. Campbell.

Journal of Computing and Information Science in Engineering APRIL 2022, Vol. 22 / 021003-1
Copyright © 2021 by ASME

mailto:shashank.sharma.1991@outlook.com
mailto:anurag.purwar@stonybrook.edu

inextricably tied to its path, i.e., one cannot specify arbitrary orien-
tations for path-points and expect to find a suitable four-bar mech-
anism. This is true of all single-degree-of-freedom mechanisms. In
our previous work [49], we have found this closed-form relation-
ship between path and orientation data using Fourier descriptors
for planar four-bar mechanisms and proposed a motion synthesis
approach to solve the Alt–Burmester problems. However, this
approach requires that we manually discover the connection
between the properties of the path and the motion for each planar
mechanism independently. Also, since Fourier analysis is used to
break down 2D coupler curves as a sum of trigonometric functions
using a complex Fourier transform, this approach cannot scale to
spatial 3D mechanisms. In this paper, we propose a machine learn-
ing approach to solve the Alt–Burmester problems for the purpose
of generating defect-free spatial mechanisms. Although the paper
focuses on the synthesis of 5-SS linkage mechanisms, the approach
is general enough to handle any single-degree-of-freedom spatial
mechanism. A 5-SS platform linkage consists of a rigid movable
platform (also called, coupler) supported by five legs, each with a
spherical joint on both ends (see Fig. 1). The motion of a point
on the moving platform of an example 5-SS mechanism is shown
in Fig. 2. Incidentally, the figure shows universal (T) joints at the
fixed base because a 5-TS mechanism was easier to simulate in a
CAD package like Autodesk Inventor since it does not have redun-
dant degrees-of-freedom present in a binary SS link. The kinematics
of a 5-SS mechanism is exactly the same as a 5-TS mechanism. The
coordinates of fixed pivots (Fi) and moving pivots (Mi) in the figure
are taken from Innocenti’s paper on 5-SS mechanism synthesis and
represent the five smallest SS dyads in the paper [41].

As can be seen in Fig. 2, coupler curves of spatial 5-SS mecha-
nisms tend to have multiple branches and circuits. Here, we see
two circuits characterized by two closed-loop curves and several
branches, which break each curve into multiple segments separated
by singularity points. A mechanism can carry a floating link contin-
uously only in a given circuit and even in each circuit; limits of the
actuation can break the circuit into pieces called branches. Thus, if
several poses are given as input and they belong to different circuits,
then the mechanism can carry the floating link through the poses
within one circuit only. The mechanism would have to be disassem-
bled and assembled again in a different configuration to make it pass
through poses on another circuit. This is known as a circuit defect.
Chase and Mirth discuss in great detail the challenges of synthesiz-
ing single-degree-of-freedom mechanisms due to circuit and branch
defects [50]. Roth and Freudenstein have discussed the occurrence
of defects in mechanism synthesis for path generation using numer-
ical methods [51]. Wampler et al. show that there exist many defec-
tive mechanisms for the nine-point path synthesis problem [52].
These defects tend to be more prominent and more difficult to
resolve in spatial mechanisms compared to planar mechanisms.
For example, a planar four-bar can have up to two circuits and
four branches. However, in Fig. 2, we can observe the existence
of at least three circuits and 15 branches.
The field of computer vision has spearheaded the use of machine

learning technologies to solve challenging real-world problems
[53,54]. One of these problems has been Image Inpainting which
aims to restore damaged paintings and photographs [55]. The use
of generative models like variational autoencoders (VAEs) [56]
and generative adversarial networks [57] has proven to be
extremely successful in adding missing information to corrupted
images [58,59]. The VAE’s ability to do data augmentation, varia-
tion synthesis, and dimensionality reduction could be advantageous
in the kinematic synthesis of mechanisms as well.
In the context of the Alt–Burmester problem, the VAE takes a

mixture of path-points and poses as input, and outputs multiple
pure motions, i.e., it augments the “missing” orientations to the
path-points. To add compatible orientations to the Alt–Burmester
problem, the VAE has to learn path-orientation relationships for
defect-free motions. Since orientation augmentation can result in
multiple motions, we are interested in generating a variation of plau-
sible defect-free motions. The VAE does this by also learning the
underlying distribution of the family of possible trajectories. This
underlying multivariate Gaussian distribution is used to sample a
latent vector that represents a low dimensional signature of
motions. Thus, we use a VAE to reformulate the Alt–Burmester
problem into a pure motion synthesis problem (also known as
rigid body guidance problem) which enables us to leverage existing
motion synthesis algorithms. In this paper, we use an atlas-based
approach and search a clustered database to find solution mecha-
nisms because during the training of the VAE, we already built a
database. Although this paper focuses on 5-SS spatial mechanisms,
the basic approach presented in this paper is agnostic of the type of
mechanisms. Moreover, since the output of VAE is a conditioned
motion with compatible orientation information, the last step of
synthesis of mechanisms can also utilize other algebraic methods
instead of a database-driven approach. We note that in the
absence of compatible orientations for the given path-points, most
algebraic methods, such as the ones proposed in Refs. [20,33,34],
would produce defective planar mechanisms.
To train the ML model, we first create a database consisting of

possible 5-SS linkages’ coupler motion. These motions are calcu-
lated using an iterative Newton–Raphson algorithm solver. We
use a quaternion representation for orientations and then data are
normalized, pruned, and augmented using curvature and torsion
of path-curves. After that, we use a VAE to learn the underlying dis-
tribution of coupler motions and their path-orientation relationship.
Once the training phase is completed, the VAE is utilized to refor-
mulate the Alt–Burmester problem into a motion synthesis problem
by augmenting compatible orientation data. The basic idea is that
once the VAE has learned a relationship between the orientations

Fig. 1 Kinematic diagram for a 5-SS mechanism

Fig. 2 Motion of coupler point of an example 5-SS mechanism

021003-2 / Vol. 22, APRIL 2022 Transactions of the ASME

and path-points of a mechanism, during the testing phase, it can be
queried to provide missing orientations for the Alt–Burmester prob-
lems. An advantage of this approach is that since the training is per-
formed only on defect-free motions, the likely output is a highly
conditioned one, which would result in a defect-free mechanism.
By sampling in the latent space of the VAE, a variety of plausible
motion trajectory signatures, that fall in the family of defect-free
5-SS coupler motions, can be generated. These latent signatures
are finally looked up in a hierarchical database, created using the
K-means clustering algorithm, to find solution mechanisms. Alter-
natively, classical motion synthesis algorithms can also be used at
this stage to generate more accurate mechanisms [41,42,44]. The
outlined approach can be scaled to any single-degree-of-freedom
spatial mechanisms. The algorithm proposed in this paper is visua-
lized in Fig. 3.
The rest of the paper is organized as follows. Section 2 presents

the numerical approach to generate 5-SS coupler motions; Sec. 3
discusses the methodology devised to make data more conducive
to learning, while Sec. 4 uses semi-supervised machine learning
tools to calculate multiple solution mechanisms. In Sec. 5, we
present our approach to the mechanism synthesis for the spatial
Alt–Burmester problem. Finally, in Sec. 6, two examples are pre-
sented, which showcase the effectiveness of the proposed approach.

2 Data Generation
The first step is to generate a sufficiently large data set of 5-SS

mechanisms with their coupler motion trajectory. This is achieved
by creating a Newton–Raphson solver, which uses the general con-
straint equations proposed in our previous work [60].
A 5-SS spatial mechanism in motion is subjected to a set of con-

straints imposed by the rigidity of its links. The general constraint
enforces the rigidity of a binary link with two spherical joints repre-
sented by the homogeneous point coordinates of the fixed point
(a1, a2, a3, a4) and that of the floating point (c1, c2, c3, c4), where
a4 and c4 are the homogenizing factors. The constraint equation is
given as

CSS : 2a1c1 + 2a2c2 + 2a3c3 + a0c4 = a4
c21 + c22 + c23

c4

()
(1)

where a0 is given as

a0 = a4r
2 −

a21 + a22 + a23
a4

(2)

Here, r is the radius of the sphere formed by the SS link with the
center given by (a1, a2, a3, a4). Equation (1) represents a spherical
constraint arising from the fact that the floating point is constrained
to move on a sphere of radius r with its center located at the fixed
joint.
In Figs. 1 and 2, the fixed pivots are labeled Fi, while the moving

pivots on the coupler are labeledMi, and the moving frame attached
to the platform is located at the point C. The six-node moving plat-
form M1M2M3M4M5C is kinematically equivalent to a set of 12
binary links M1M2, M1M3, M1M4, M1M5, M2M3, M3M4, M4M5,
M1C, M2C, M3C, M4C, and M5C, which represent 12 constraints.
For a ternary link with three nodes, there would be three binary con-
straints and addition of a new node on the link would add three new
constraints. Therefore, an L-node coupler has l× 3+ 3 such con-
straints, where l= L− 3; l≥ 3. An additional five constraints exist
for the binary links FiMi; i= 1…5. Thus, a spatial 5-SS mechanism
is subjected to 17 independent rigidity constraints. During simula-
tion, the Cartesian coordinates of the five fixed pivots F1, …, F5

are the known parameters while the Cartesian coordinates of the
five moving pivots M1, …, M5 and the coupler point C are the
unknowns. Since there exist 17 constraints and 18 unknowns, this
results in a one degree-of-freedom coupler motion.
Since it is practically difficult to actuate a base spherical joint

directly, we actuate the mechanism by placing a linear actuator
between the fixed pivot of one dyad and the moving pivot of
another dyad. Liao and McCarthy use the same actuation scheme
[42]. The practicality of this scheme is demonstrated by Plecnik
and McCarthy via a spatial steering linkage design [43]. The
length of the actuator imposes an additional constraint on the
motion and can be defined using Eq. (1) as a spherical constraint
with a changing radius. To simulate the mechanism, the input actu-
ator is iteratively perturbed by a finite displacement and the new
position of the mechanism is calculated until the algorithm fails
to converge. Newton–Raphson algorithm fails to converge at singu-
lar configurations and these configurations occur at the extreme
points of each defect-free trajectory.

Fig. 3 Schematic of the algorithm: (a) training pipeline and (b) inference pipeline

Journal of Computing and Information Science in Engineering APRIL 2022, Vol. 22 / 021003-3

For a 5-SS mechanism, a system of 18 unknowns and 18 con-
straint equations can be formed and is represented as

Φ(q) = 0 (3)

where q is the state vector that consists of the unknown coordinates.
Since the linear actuator is perturbed by a small finite displacement,
the previous state of the mechanism serves as a good initial
approximation.
The iterative simulation algorithm followed can be defined as

qi+1 = qi − [J−1(qi)]Φ(qi) (4)

where qi is the state vector at ith iteration,Φ(qi) is the vector of resi-
duals at q= qi, and [J−1(qi)] is the inverse of Jacobian matrix eval-
uated at q=qi. The Jacobian matrix is of the following form:

[J(q)] =

∂ϕ1

∂q1

∂ϕ1

∂q2
· · · ∂ϕ1

∂q18
∂ϕ2

∂q1

∂ϕ2

∂q2
· · · ∂ϕ2

∂q18
· · · · · · · · · · · ·
∂ϕ18

∂q1

∂ϕ18

∂q2
· · · ∂ϕ18

∂q18

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

To calculate the Jacobian matrix, relations describing the first-order
partial derivatives of constraint equations are required. For an SS
dyad described in Eq. (1), the first-order partial derivatives can be
given as follows:

∂CSS

∂a1
= 2(a1 − c1) (6)

∂CSS

∂a2
= 2(a2 − c2) (7)

∂CSS

∂a3
= 2(a3 − c3) (8)

Here, the homogeneous point coordinates a4 and c4 have been
assumed to be unity without any loss in generality.
Thus, by iteratively perturbing the input actuator and solving the

constraints for moving pivot coordinates, we can simulate a 5-SS
mechanism and extract the path traced by the six unknown points
M1,M2,M3,M4,M5, C on the coupler represented by their Cartesian
coordinates P= (Px, Py, Pz, 1). There exists an accuracy-storage
trade-off for the simulation process. The accuracy of the path
increases with decreased perturbation magnitude. However, this
results in sampling more points on the path and thus needs more
storage. The hyperparameters were set so that each defect-free
segment of the motion consisted of at least 20 precision points.
To find the orientation of the moving platform, we first calculate

the 4 × 4 homogeneous matrix [Df] representing its spatial displace-
ment using the six points on coupler as follows:

[Df] = [Pf][Pi]
+ = [Pf][Pi]

∗([Pi][Pi]
∗)−1 (9)

where [Pi] = [PT
i,1, P

T
i,2, . . . , P

T
i,6] is the matrix representing initial

coupler coordinates and [Pf] = [PT
f ,1, P

T
f ,2, . . . , P

T
f ,6] represents the

coupler coordinates after displacement. The + operator represents
the pseudo-inverse while the * stands for conjugate transpose oper-
ation. The displacement matrix is of the form

[Df] =
[R] d
0 1

[]
(10)

where the 3 × 3 rotation matrix [R] is isolated from the 4 × 4 displa-
cement matrix [Df]. This rotation matrix can then be converted into

a unit quaternion Qf= (q1, q2, q3, q4) using the following equation
(see Ref. [61] for details):

[R]=
q24 + q21 − q22 − q23 2(q1q2 − q4q3) 2(q1q3 + q4q2)
2(q1q2 + q4q3) q24 − q21 + q22 − q23 2(q2q3 − q4q1)
2(q1q3 − q4q2) 2(q2q3 + q4q1) q24 − q21 − q22 + q23

⎡
⎣

⎤
⎦

(11)

In this paper, we define a coupler motion as a time-sequenced series
of coupler location and orientation, each denoted by three Cartesian
coordinates (Px, Py, Pz) of the coupler point C and four quaternion
coordinates (q1, q2, q3, q4). Thus, for our purposes, a spatial coupler
motion is represented by a 7D curve. We generated a data set of
10,000 defect-free coupler motions using arbitrarily selected 5-SS
mechanisms. This database represents a family of motions a
general 5-SS mechanism can achieve. Figure 4 shows one of the
simulated mechanisms and the motion generated by the moving
frame attached to the coupler. Please note that the floating
coupler is a rigid link, i.e., there is no relative motion between the
light blue lines. In Fig. 3(a), we can see that the simulator takes
in spatial mechanisms and outputs the complete motion raw data-
base. The database took approximately 150MB of storage and 1 h
of computing time to generate using MATLAB on a PC with an
Intel i5 processor. In the next section, we discuss the methodology
used to refine this data set for machine learning purposes.
It should be noted that the branches of a mechanism are depen-

dent on its actuation scheme. A different actuation scheme like
using a motor at fixed pivots or a motor at moving pivot will
result in different branches for the same mechanism. As a result,
a separate data set will have to be created for each actuation scheme.

3 Data Preprocessing
Before the generated data can be used for machine learning, the

data need to be cleaned, normalized, balanced, augmented, and
masked.

3.1 Data Cleanup. Our data set stores the spatial motion of the
moving platform as an array of n 7D data points. In the data set of
10,000 motion curves, we observe that n ranges from 1 to 1562 as
can be seen in Fig. 5. Since curves with a very low number of data
points do not capture their geometry well, we choose to remove
them. Thus, curves made of less than 20 data points are removed
resulting in a data set of 9472 curves.
When the solver is simulating a 5 SS mechanism, as outlined in

Sec. 2, it may jump from one branch to another. Such motions are
characterized by a C1 discontinuity at the point where the branch
jump occurs. Examples of two such curves are shown in Fig. 6.
Thus, to isolate such curves with discontinuity, the first-order dif-

ferential is calculated and spikes in its magnitude are observed. The
Z-score metric, also called the standard score, is used to characterize
these spikes. A Z-score indicates how many standard deviations
away an element is from the mean and is given as

z =
X − μ

σ
(12)

where μ is the mean, σ is the standard deviation, and X is the mag-
nitude of the first-order differential of coupler motion. In our study,
an outlier is defined as any curve having Zmax > 15. Filtering out the
outliers results in a cleaner database containing 8688 coupler
curves.

3.2 Data Normalization. The remaining coupler motions are
fitted with an interpolation curve. Fourth-order B-spline [62] inter-
polation is used for path data while spherical linear quaternion inter-
polation (Slerp) [63] is used for orientation data. Twenty-five
data points are uniformly sampled on each curve leading to an
arc-length parameterization. The benefit of using this arc-length

021003-4 / Vol. 22, APRIL 2022 Transactions of the ASME

parametrization is that it allows a unique coupler curve representa-
tion. This property is desirable since it makes comparing two curves
with a similar trajectory but different time parametrization much
easier as demonstrated in Fig. 7.
Creating a curve representation that is invariant to translation,

rotation, and scaling is desirable when comparing curves. For the
path data, first, the mean (�x, �y, �z) of the curve is calculated and it
is translated to the origin of our coordinate system. Next, the prin-
cipal axes of the path data are rotated to align with the Cartesian
axes. The principal component axes are the eigenvectors of the
covariance matrix of the point cloud that defines the curve. Also,
the path data are scaled to unit arc-length. The orientation data
are normalized by rotating the moving frame such that it is
aligned with the fixed frame at the start of motion. The effect of nor-
malization on a sample coupler motion can be seen in Fig. 8.

3.3 Data Balancing. The database in its present form is unba-
lanced, i.e., it has more samples of coupler curves which are more
probable with a lesser number of samples of other more diverse
examples. This leads to the algorithm not learning well since it
comes across the more probable examples most of the time. To
overcome this bias, a limited number of diverse motions are

selected from the complete database by under-sampling similar
curves. This balancing is also consistent with our goal to produce
a variety of 5-SS mechanisms for a given problem to enhance the
creativity of designers and provide them with a large set of solutions
to choose from.
According to the fundamental theorem of space curves in differ-

ential geometry, every regular curve in three-dimensional space,
with non-zero curvature, has its shape completely determined by
its curvature and torsion [64]. Thus, a good metric to compare the
similarity of two curves is curvature–torsion descriptor. For a
spatial curve, curvature is a scalar measurement of the magnitude
of the bending of the curve within the osculating plane. Torsion
is a scalar measurement of the amount that the curve bends out of
the osculating plane. The curvature and torsion can be calculated
as follows:

κ =
‖r′(t) × r′′(t)‖

‖r′(t)‖3 (13)

τ =
r′(t) × r′′(t)() · r′′′(t)
‖r′(t) × r′′(t)‖2 (14)

Fig. 4 A 5-SS mechanism simulation where black triangles are
the fixed pivots, gray lines are the SS dyads, light blue lines
are the floating coupler, and the red, green, and blue arrows
represent the moving frame attached to the coupler

Fig. 5 Histogram showing number of data points in eachmotion
curve included in database

Fig. 6 Coupler curves with C1 discontinuity caused due to a
branch jump

Fig. 7 Curve 1 and curve 2 represent the same geometric curve,
but with different time parametrization. They share the same
unique arc-length parametrization as shown in curve 3.

Fig. 8 Before and after normalizing a motion curve

Journal of Computing and Information Science in Engineering APRIL 2022, Vol. 22 / 021003-5

where r(t) is the curve and the n number of superscripts “′” define its
nth order derivative. The curvature is always positive while the
torsion can be negative.
For the path data, we calculate the curvature and torsion, while

for the orientation data, we use the quaternion data directly to
compare two curves. We define a similarity score (δ) as a weighted
sum of l2 norm of difference between path curvature (κ), path
torsion (τ), and quaternion (Q) of two motions which is given as

δ =
w1‖κ2 − κ1‖ + w2‖τ2 − τ1‖ + w3‖Q2 − Q1‖

n
(15)

where w1, w2, and w3 are weights associated with κ, τ, and Q,
respectively, and n is the total number of constituent points in
each curve. In our numerical experiments, we have found that
weights w1= 1, w2= 0.1, and w3= 2 provide a fair balance
between weighing of path and orientation data.
We select the similarity metric threshold such that if δ< 0.25, the

two curves are considered to be similar and one of them is dropped
from the database. It can be observed in Fig. 9 that some curves
occur up to 170 times in the database. On further exploring, we
find that the common curves represent simple arcs and line trajec-
tories and their reflections as seen in Fig. 10. Under-sampling
similar curves lead to a balanced data set containing 5222 coupler
paths.

3.4 Data Augmentation. In kinematics, it is known that if a
curve is a valid coupler motion, its mirrored curve is also a valid
motion. For the machine learning algorithm to gain this domain
knowledge, coupler motions mirrored across XY, YZ, and XZ
planes are added to the database. Thus, this step encourages the
model to be invariant to mirror operations. Since reflecting the
moving coordinate frame converts it from a right-handed system
to a left-handed system, we attach a new right-handed frame to

the coupler and recalculate the orientation data over the motion.
After this step, our database contains 20,888 motion curves.

3.5 Data Masking. For the machine learning model to learn
the underlying kinematic relationship between path-points and ori-
entations, we synthetically mask the coupler motion database to
create a path+ pose constraint database. By providing the masked
database as input and the unmasked database as output to the ML
model, we can train it to learn the path-orientation relationship in
a supervised manner. This step is essential to reformulate the
Alt–Burmester problem into a motion synthesis problem. To
create a masked motion from a n-point coupler motion, m-points
(0≤m≤ n) are randomly selected and the orientations of these m
points are set to zero. Also, a 1D binary mask is created representing
the locations where the information is missing. An example of
unmasked and masked motion curves is shown in Fig. 11. The
mask value is 0 atm-points and 1 at the remaining points. This oper-
ation increases the database size to 417,760 masked motion curves.
Finally, some Gaussian noise is added to all the curves. This acts

as a regularizer to the machine learning algorithm, encourages
robust learning, and avoids overfitting. The magnitude of the
added noise is up to 3% the maximum magnitude of motion
curve coordinates.
This concludes the data preprocessing pipeline which generates

two databases that are used to train the machine learning models.
First is the database containing 7D pure coupler motion curves
defined by three location coordinates and four orientation coordi-
nates. Second is the database containing 8D masked coupler
motion curves defined by three location coordinates, four orienta-
tion coordinates, and one mask coordinate. In Fig. 3(a), we can
see that the preprocessing step generates the partial motion database
and completes motion database. The data preprocessing pipeline
was implemented using PYTHON and its libraries and took approxi-
mately 3 h of computing time on a PC with an Intel i5 processor.

4 Machine Learning Model Training
4.1 Training the Variational Autoencoder. Now that the

database has been prepared; it can be used to train a machine

Fig. 9 Bar graph showing the number of similar curves found for
each curve

Fig. 10 Most common variety of motions in the database

Fig. 11 An unmasked and masked 5-SS coupler motion curve

Fig. 12 Architecture of a VAE

021003-6 / Vol. 22, APRIL 2022 Transactions of the ASME

learning model. The goal of our machine learning model is three-
fold: (1) to learn the path-orientation relationship and augment com-
patible missing orientations, (2) to learn the distribution of
defect-free coupler motions and generate plausible motions
similar to the user-inputted path and motion constraints, and (3)
provide a low dimensional signature to the coupler motions
which can easily be compared to other motions using a similarity
metric.
To achieve this, we use a VAE, which is a type of generative

neural network composed of an encoder and a decoder network.
The encoder encodes input information, while the decoder
decodes encoded information using probabilistic inference. We
train a VAE network on a data set of complete and partial motion
curves and allow it to predict complete motion curves by approxi-
mating the underlying distribution of observed data. Our general
VAE architecture is shown in Fig. 12, where the encoder model
finds the latent distributions defined as a multivariate Gaussian dis-
tribution defined by mean vector μ and standard deviation vector σ.
A latent vector z can then be sampled from this distribution and used
to generate unmasked motion trajectories using the decoder model.
The samplings can represent data points not seen by the network
during training and this is what makes a VAE rich and useful for
generating new data. The encoder is represented as qθ(z|X) where
θ are the encoder weights and biases while a decoder is represented
as pϕ(X|z) where ϕ denotes decoder weights and biases.
The input to our network is a concatenated vector X= (Xi, Xi+ 1,

…, Xm), where m is the number of points on each motion curve and
Xi= (xi, yi, zi, q1i, q2i, q3i, q4i, vi). Here, vi is the binary mask with
value 1 or 0 to indicate if the orientation information is complete
or not, respectively. For 20 points on a given motion curve, the X
is a 160-dimensional vector, while the output of the network is
defined by another vector X̂motion, which consists of only the
path- and orientation information.
The loss function used to train the VAE is defined as sum of

reconstruction loss (RL) and Kullback–Leibler divergence (KL),
which is given as

Loss = RL + KL (16)

RL = ‖X̂motion − Xmotion‖ (17)

KL =
∑k
i=1

σ2i + μ2i − log (σi) − 1 (18)

where the latent space is k dimensional and the reconstruction loss is
the Euclidean norm, represented as ‖.‖ operator, of the difference
between generated motion (X̂motion) and true (or labeled) motion
(Xmotion).

This supervised training step for VAE is visualized in Fig. 3(a). It
can be seen that during training, the partial motion database serves
as input while the complete motion database serves as output to the
VAE.
Multiple VAEs with different depths and bottlenecks were tested

to find the best architecture. The capacity of a network increases
with increasing depths and it can describe a much more complex
function. However, due to the problem of vanishing gradient,
deep networks tend to be harder to train. Thus, there exists an
optimal depth that balances complexity and trainability. Similarly,
the narrower the bottleneck layer, the better is the dimensionality
reduction. However, reducing the width too much can lead to exces-
sive loss of information. Networks with different depths (up to four)
and bottleneck layer widths (15, 30, and 60) were tested and the
results are given in Table 1. Each VAE was trained for 1000
epochs with a batch size of 256 using Adam (adaptive moment esti-
mation) optimizer.
In our computational experiments, we found that the

VAE-FC-H3-Z15 performed the best and had the lowest validation
loss. It contains three hidden fully connected (FC) layers consisting
of 200, 100, and 60 nodes each, rectified linear unit activation func-
tion after each layer, and the bottleneck layer z contains 15 nodes.
The training curves of VAE-FC-H3-Z15 can be seen in Fig. 13.
A few example outputs generated using VAE-FC-H3-Z15 are

shown in Fig. 14, where an input constraint (top-left) generates
three motion trajectories sampled from the underlying distribution.
We note that the VAE can generate variations in both path and ori-
entation data using its understanding of family of 5-SS mechanism
motions.
The model training pipeline was implemented using PYTHON and

KERAS. We initially used Google Colaboratory in GPU mode where
each model took about 5–6 h to train. Later, we used a workstation

Table 1 VAEmodel architectures that were tested and their performance: this table shows details of each architecture to indicate the
number of hidden FC layers, the number of neurons in each layer, and the dimension of the latent space

Name Encoder arch. Latent (z) dim. Decoder arch. Training loss Validation loss

VAE-FC-H1-Z15 (100) 15 (100) 32.2734 32.4453
VAE-FC-H1-Z30 (100) 30 (100) 32.2415 32.2879
VAE-FC-H1-Z60 (100) 60 (100) 32.0597 32.3151
VAE-FC-H2-Z15 (150,75) 15 (75,150) 28.1138 28.8488
VAE-FC-H2-Z30 (150,75) 30 (75,150) 28.6563 29.2358
VAE-FC-H2-Z60 (150,75) 60 (75,150) 28.1563 28.8108
VAE-FC-H3-Z15 (200,100,60) 15 (60,100,200) 25.2833 25.8237
VAE-FC-H3-Z30 (200,100,60) 30 (60,100,200) 25.5534 26.0324
VAE-FC-H3-Z60 (200,100,60) 60 (60,100,200) 26.2158 26.6811
VAE-FC-H4-Z15 (200,150,100,60) 15 (60,100,150,200) 25.5023 25.8424
VAE-FC-H4-Z30 (200,150,100,60) 30 (60,100,150,200) 26.3350 26.6101
VAE-FC-H4-Z60 (200,150,100,60) 60 (60,100,150,200) 28.2903 28.3822

Notes: For example, VAE-FC-H3-Z15 means that this is a VAE architecture with FC layers, three hidden (H3) layers, and 15-dimensional latent space (Z15).
This is the seventh entry in this table and reading columns of this entry, and we see that the encoder network has 200, 100, and 60 neurons in its three layers,
while the decoder network has 60, 100, and 200 neurons in its three layers.

Fig. 13 Training losses for the FC VAE

Journal of Computing and Information Science in Engineering APRIL 2022, Vol. 22 / 021003-7

with an Intel i7 processor and an Nvidia Titan X GPU and got the
training time down to almost an hour per model. The code is
available on Github.2

4.2 Creating a Hierarchical Database. One of the most pow-
erful features of the VAE is its ability to provide a compact repre-
sentation of each coupler motion using its latent vector. We can
use this compact signature for fast and efficient database search
and clustering algorithms. Thus, once the training is completed,
the encoder module is used to generate latent vector signatures of
each masked motion in the database denoted by the μ vector.
Then, these signatures are clustered into 500 groups using the
K-means clustering algorithm. The distance metric used is the
Euclidean distance. As a result, we get 500 cluster centers subdivid-
ing the original data set of 400k+ coupler constraint curves.

5 Mechanism Synthesis for the Spatial Alt–Burmester
Problem
Once the VAE is trained and the hierarchical database created, we

can use them to synthesize mechanisms. When the user inputs a
curve consisting of path-points and poses, it is normalized and
runs through the encoder network of VAE to find the μ and σ
vectors. Multiple z vectors are then sampled from the latent distribu-
tion which denotes a family of feasible curve signatures. These

Fig. 14 Motion trajectories generated using VAE for a Alt–Bur-
mester input constraint: (a) input masked motion, (b) generated
motion 1, (c) generated motion 2, and (d) generated motion 3

Fig. 15 Example 1: (a) input Alt–Burmester problem, (b) synthe-
sized mechanism 1, (c) synthesized mechanism 2, (d) synthe-
sized mechanism 3, (e) synthesized mechanism 4, and (f)
synthesized mechanism 5

Fig. 16 Example 2: (a) input Alt–Burmester problem, (b) synthe-
sized mechanism 1, (c) synthesized mechanism 2,
(d) synthesized mechanism 3, (e) synthesized mechanism 4,
and (f) synthesized mechanism 5

2https://github.com/ssharma1991/ml˙kinsys

021003-8 / Vol. 22, APRIL 2022 Transactions of the ASME

https://github.com/ssharma1991/ml_kinsys
https://github.com/ssharma1991/ml_kinsys

curve signatures are then compared to each of the cluster centers
using the L2 norm difference metric. Once a center is selected,
the best available mechanism within the cluster can be returned to
the user as a feasible solution. Thus, the user can find multiple
defect-free solution mechanisms.
Alternatively, instead of only using the encoder, we can use the

complete VAE to transform any Alt–Burmester problem into a
pure motion synthesis problem. With the conditioned output avail-
able from the VAE, existing synthesis algorithms can also be used
to generate 5-SS mechanisms [41,42]. With compatible orientations
available, it is also likely that the traditional synthesis algorithms
would produce better results.
We visualize the inference pipeline explained above in Fig. 3(b),

where one can see the flow of data in both cases: using the hierar-
chical database (latent signature database) or using the classical
synthesis approach.

6 Examples
In this section, we provide two examples of our algorithm in

action. In the examples, we input a partial spatial motion curve.
The trajectory is then processed by the encoder of the VAE-FC-
H3-Z15 resulting in a 15-dimensional Gaussian distribution
specified by μ and σ. We sample five latent vectors z from this dis-
tribution and look up the closest cluster centers in our database. In
the cluster, we find the best approximation of the coupler motion
available and provide it as a solution.
The input motion curves are shown in the first plot in each of

Figs. 15 and 16. The other plots show a prospective 5-SS solution
that closely matches the target constraints. More mechanisms can
be generated by sampling additional latent vectors from the VAE.

7 Conclusions
In this paper, we have presented a complete pipeline for the

defect-free synthesis of spatial 5-SS mechanisms consisting of
mechanism simulation, data preprocessing, and machine learning
stages. To generate coupler motion data, we use a geometric
constraint-based numerical approach which uses the Newton–
Raphson method. Then, the data are pre-processed and masked
for robust learning. Finally, semi-supervised machine learning tech-
niques of VAE and K-mean clustering are used to efficiently find
solution mechanisms. While our focus was on the spatial 5-SS
mechanisms, the algorithm presented is general enough to solve
the Alt–Burmester problem for any spatial mechanism and generate
multiple solutions. While this paper is one of the first attempts at
using machine learning to solve the spatial kinematic synthesis
problem, it is a mystery as to what does a latent space truly repre-
sent. Our current implementation for the 5-SS mechanisms uses a
specific mode of actuation. It is expected that other modes of actu-
ation would require re-training the VAE model. There is also an
issue of sparse-coverage of high dimensional design space for
spatial mechanisms by a given data set. In the paper, we attempt
to reduce this design space by focusing on “uniquely shaped”
motions, but better ways of addressing this “curse of dimensional-
ity” need to be explored. Future work could also focus on extending
the presented approach to multidimensional spatial mechanisms.

Acknowledgment
This work has been financially supported by The National

Science Foundation under a research grant #CMMI-1563413 to
Stony Brook University. All findings and results presented in this
paper are those of the authors and do not represent those of the
funding agencies.

Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
The data and information that support the findings of this article

are freely available. The authors attest that all data for this study are
included in the paper.

References
[1] Erdman, A. G., and Sandor, G. N., 1991, Advanced Mechanism Design: Analysis

and Synthesis, 2nd ed., Vol. 2, Prentice-Hall, Englewood Cliffs, NJ.
[2] McCarthy, J. M., and Soh, G. S., 2010, Geometric Design of Linkages, Vol. 11,

Springer, New York.
[3] Alt, H., 1923, “Uber die Erzeugung gegebener ebener Kurven mit Hilfe des

Gelenkvierecks,” ZAMM, 3(1), pp. 13–19.
[4] Freudenstein, F., 1954, “An Analytical Approach to the Design of Four-Link

Mechanisms,” Trans. ASME, 76(3), pp. 483–492.
[5] Hartenberg, R. S., and Denavit, J., 1964, Kinematic Synthesis of Linkages,

McGraw-Hill, New York.
[6] Suh, C. H., and Radcliffe, C. W., 1978, Kinematics and Mechanism Design, John

Wiley and Sons, New York.
[7] Blechschmidt, J. L., and Uicker, J. J., 1986, “Linkage Synthesis Using

Algebraic-Curves,” J. Mech. Trans. Autom. Des. Trans. ASME, 108(4),
pp. 543–548.

[8] Deshpande, S., and Purwar, A., 2017, “A Task-Driven Approach to Optimal
Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem,”
ASME J. Mech. Rob., 9(6), p. 061005.

[9] Nolle, H., and Hunt, K. H., 1971, “Optimum Synthesis of Planar Linkages to
Generate Coupler Curves,” J. Mech., 6(3), p. 267.

[10] Sancibrian, R., Viadero, F., Garcia, P., and Fernandez, A., 2004, “Gradient-Based
Optimization of Path Synthesis Problems in Planar Mechanisms,” Mech. Mach.
Theory, 39(8), pp. 839–856.

[11] Ullah, I., and Kota, S., 1997, “Optimal Synthesis of Mechanisms for Path
Generation Using Fourier Descriptors and Global Search Methods,” ASME
J. Mech. Des., 119(4), pp. 504–510.

[12] Wu, J., Ge, Q. J., and Gao, F., 2009, “An Efficient Method for Synthesizing
Crank-Rocker Mechanisms for Generating Low Harmonic Curves,” ASME
2009 International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, Paper No. DETC2009-87140.

[13] Sharma, S., Purwar, A., and Ge, Q. J., 2019, “An Optimal Parametrization
Scheme for Path Generation Using Fourier Descriptors for Four-Bar
Mechanism Synthesis,” ASME J. Comput. Inform. Sci. Eng., 19(1), p. 014501.

[14] Chu, J. K., and Sun, J. W., 2010, “A New Approach to Dimension Synthesis of
Spatial Four-Bar Linkage Through Numerical Atlas Method,” ASME J. Mech.
Rob., 2(4), p. 041004.

[15] Wandling Sr, G. R., 2000, “Synthesis of Mechanisms for Function, Path, and
Motion Generation Using Invariant Characterization, Storage and Search
Methods,” Ph.D. thesis, Iowa State University, Ames, IA.

[16] Vasiliu, A., and Yannou, B., 2001, “Dimensional Synthesis of Planar
Mechanisms Using Neural Networks: Application to Path Generator Linkages,”
Mech. Mach. Theory, 36(2), pp. 299–310.

[17] Galan-Marin, G., Alonso, F. J., and Del Castillo, J. M., 2009, “Shape
Optimization for Path Synthesis of Crank-Rocker Mechanisms Using a
Wavelet-Based Neural Network,” Mech. Mach. Theory, 44(6), pp. 1132–1143.

[18] Deshpande, S., and Purwar, A., 2019, “A Machine Learning Approach to
Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages,” ASME
J. Comput. Inform. Sci. Eng., 19(2), p. 021004.

[19] Deshpande, S., and Purwar, A., 2019, “Computational Creativity Via Assisted
Variational Synthesis of Mechanisms Using Deep Generative Models,” ASME
J. Mech. Des., 141(12), p. 121402.

[20] Deshpande, S., and Purwar, A., 2020, “An Image-Based Approach to Variational
Path Synthesis of Linkages,” ASME J. Comput. Inform. Sci. Eng., 21(2),
p. 021005.

[21] Chiang, C. H., 2000, Kinematics of Spherical Mechanisms, Krieger Pub.,
Malabar, FL.

[22] Chu, J., and Sun, J., 2010, “Numerical Atlas Method for Path Generation of
Spherical Four-Bar Mechanism,” Mech. Mach. Theory, 45(6), pp. 867–879.

[23] Mullineux, G., 2011, “Atlas of Spherical Four-Bar Mechanisms,” Mech. Mach.
Theory, 46(11), pp. 1811–1823.

[24] Premkumar, P., Dhall, S. R., and Kramer, S. N., 1988, “Selective Precision
Synthesis of the Spatial Slider Crank Mechanism for Path and Function
Generation,” ASME J. Mech. Trans. Autom. Des., 110(3), pp. 295–302.

[25] Premkumar, P., and Kramer, S. N., 1989, “Position, Velocity, and Acceleration
Synthesis of the RRSS Spatial Path-Generating Mechanism Using the Selective
Precision Synthesis Method,” ASME J. Mech. Trans. Autom. Des., 111(1),
pp. 54–58.

[26] Ananthasuresh, G. K., and Kramer, S. N., 1994, “Analysis and Optimal Synthesis
of the RSCR Spatial Mechanisms,” ASME J. Mech. Des., 116(1), pp. 174–181.

[27] Jiménez, J., Álvarez, G., Cardenal, J., and Cuadrado, J., 1997, “A Simple and
General Method for Kinematic Synthesis of Spatial Mechanisms,” Mech.
Mach. Theory, 32(3), pp. 323–341.

Journal of Computing and Information Science in Engineering APRIL 2022, Vol. 22 / 021003-9

http://dx.doi.org/10.1002/zamm.19230030103
http://dx.doi.org/10.1115/1.3258767
http://dx.doi.org/10.1115/1.4037801
http://dx.doi.org/10.1016/0022-2569(71)90370-3
http://dx.doi.org/10.1016/j.mechmachtheory.2004.02.012
http://dx.doi.org/10.1016/j.mechmachtheory.2004.02.012
http://dx.doi.org/10.1115/1.2826396
http://dx.doi.org/10.1115/1.2826396
http://dx.doi.org/10.1115/1.4041566
http://dx.doi.org/10.1016/S0094-114X(00)00037-9
http://dx.doi.org/10.1016/j.mechmachtheory.2008.09.006
http://dx.doi.org/10.1115/1.4042325
http://dx.doi.org/10.1115/1.4042325
http://dx.doi.org/10.1115/1.4044396
http://dx.doi.org/10.1115/1.4044396
http://dx.doi.org/10.1115/1.4048422
http://dx.doi.org/10.1016/j.mechmachtheory.2009.12.005
http://dx.doi.org/10.1016/j.mechmachtheory.2011.06.001
http://dx.doi.org/10.1016/j.mechmachtheory.2011.06.001
http://dx.doi.org/10.1115/1.3267461
http://dx.doi.org/10.1115/1.3258971
http://dx.doi.org/10.1115/1.2919342
http://dx.doi.org/10.1016/S0094-114X(96)00017-1
http://dx.doi.org/10.1016/S0094-114X(96)00017-1

[28] Sun, J. W., Mu, D. Q., and Chu, J. K., 2012, “Fourier Series Method for Path
Generation of RCCC Mechanism,” Proc. Inst. Mech. Eng. Part C; J. Mech.
Eng. Sci., 226(3), pp. 816–827.

[29] Sharma, S., and Purwar, A., 2020, “Path Synthesis of Defect-Free Spatial 5-SS
Mechanisms Using Machine Learning,” ASME 2020 International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference, Vol. 83990, Virtual, Online, Aug. 17–19, American
Society of Mechanical Engineers, p. V010T10A034.

[30] Burmester, L., 1886, Lehrbuch der Kinematik, Verlag Von Arthur Felix, Leipzig.
[31] Ravani, B., and Roth, B., 1983, “Motion Synthesis Using Kinematic Mappings,”

J. Mech. Trans. Autom. Des. Trans. ASME, 105(3), pp. 460–467.
[32] Hayes, M., and Zsombor-Murrary, P., 2004, “Towards Integrated Type and

Dimensional Synthesis of Mechanisms for Rigid Body Guidance,” Proceedings
of the CSME Forum 2004, London, ON, Canada, June, pp. 53–61.

[33] Ge, Q. J., Zhao, P., Purwar, A., and Li, X., 2012, “ANovel Approach to Algebraic
Fitting of a Pencil of Quadrics for Planar 4R Motion Synthesis,” ASME
J. Comput. Inform. Sci. Eng., 12(4), p. 041003.

[34] Ge, Q. J., Purwar, A., Zhao, P., and Deshpande, S., 2016, “A Task Driven
Approach to Unified Synthesis of Planar Four-Bar Linkages Using Algebraic
Fitting of a Pencil of G-Manifolds,” ASME J. Comput. Inform. Sci. Eng.,
17(3), p. 031011.

[35] Bodduluri, R. M. C., and McCarthy, J. M., 1992, “Finite Position Synthesis Using
Image Curve of a Spherical Four-Bar Motion,” ASME J. Mech. Des., 114(1), pp.
55–60.

[36] Lin, C.-C., 1998, “Complete Solution of the Five-Position Synthesis for Spherical
Four-Bar Mechanisms,” J. Marine Sci. Technol., 6(1), pp. 17–27.

[37] Ruth, D., and McCarthy, J., 1999, “The Design of Spherical 4R Linkages for Four
Specified Orientations,” Mech. Mach. Theory, 34(5), pp. 677–692.

[38] Brunnthaler, K., Schrocker, H., and Husty, M., 2006, Synthesis of Spherical
Four-Bar Mechanisms Using Spherical Kinematic Mapping (Advances in
Robot Kinematics), Springer, Dordrecht.

[39] Zhuang, Y., Zhang, Y., and Duan, X., 2015, “Complete Real Solution of the
Five-Orientation Motion Generation Problem for a Spherical Four-Bar
Linkage,” Chin. J. Mech. Eng., 28(2), pp. 258–266.

[40] Li, X., Zhao, P., Purwar, A., and Ge, Q., 2018, “A Unified Approach to Exact and
Approximate Motion Synthesis of Spherical Four-Bar Linkages Via Kinematic
Mapping,” ASME J. Mech. Rob., 10(1), p. 011003.

[41] Innocenti, C., 1995, “Polynomial Solution of the Spatial Burmester Problem,”
ASME J. Mech. Des., 117(1), pp. 64–68.

[42] Liao, Q., and McCarthy, J. M., 1997, “On the Seven Position Synthesis of a 5-SS
Platform Linkage,” ASME J. Mech. Des., 123(1), pp. 74–79.

[43] Plecnik, M. M., and McCarthy, J. M., 2012, “Design of a 5-SS Spatial
Steering Linkage,” ASME 2012 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference,
Chicago, IL, Aug. 12–15, American Society of Mechanical Engineers Digital
Collection, pp. 725–735.

[44] Li, X., Ge, Q. J., and Gao, F., 2014, “A Unified Algorithm for Geometric Design
of Platform Linkages With Spherical and Plane Constraints,” 38th Mechanisms
and Robotics Conference of International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, Vol.
5B, Buffalo, NY, Aug. 17–20, p. v05BT08A101.

[45] Sharma, S., and Purwar, A., 2020, “Unified Motion Synthesis of Spatial
Seven-Bar Platform Mechanisms and Planar-Four Bar Mechanisms,” ASME
2020 International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, Vol. 83990, Virtual, Online, Aug.
17–19, American Society of Mechanical Engineers, p. V010T10A033.

[46] Tong, Y., Myszka, D. H., and Murray, A. P., 2013, “Four-Bar Linkage Synthesis
for a Combination of Motion and Path-Point Generation,” Proceedings of the
ASME 2013 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference. Volume 6A: 37th
Mechanisms and Robotics Conference, Portland, OR, Aug. 4–7, ASME, p.
V06AT07A054.

[47] Brake, D. A., Hauenstein, J. D., Murray, A. P., Myszka, D. H., and Wampler,
C. W., 2016, “The Complete Solution of Alt–Burmester Synthesis Problems for
Four-Bar Linkages,” ASME J. Mech. Rob., 8(4), p. 041018.

[48] Zimmerman, A. R. I., 2018, “Planar Linkage Synthesis for Mixed Motion, Path,
and Function Generation Using Poles and Rotation Angles,” ASME J. Mech.
Rob., 10(2), p. 025004.

[49] Sharma, S., Purwar, A., and Ge, Q. J., 2019, “A Motion Synthesis Approach
to Solving Alt–Burmester Problem by Exploiting Fourier Descriptor
Relationship Between Path and Orientation Data,” ASME J. Mech. Rob., 11(1),
p. 011016.

[50] Chase, T., and Mirth, J., 1993, “Circuits and Branches of Single-Degree-of-
Freedom Planar Linkages,” ASME J. Mech. Des., 115(2), pp. 223–230.

[51] Roth, B., and Freudenstein, F., 1963, “Synthesis of Path-Generating Mechanisms
by Numerical Methods,” ASME J. Eng. Ind., 85(3), pp. 298–304.

[52] Wampler, C. W., Morgan, A. P., and Sommese, A. J., 1992, “Complete Solution
of the Nine-Point Path Synthesis Problem for Four-Bar Linkages,” ASME
J. Mech. Des., 114(1), pp. 153–159.

[53] Sebe, N., Cohen, I., Garg, A., and Huang, T., 2005, Machine Learning in
Computer Vision (Computational Imaging and Vision), Springer, Dordrecht.

[54] Hemanth, D., and Estrela, V., 2017, Deep Learning for Image Processing
Applications (Advances in Parallel Computing), IOS Press, Amsterdam, The
Netherlands.

[55] Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C., 2000, “Image
Inpainting,” Proceedings of the 27th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH’00, New Orleans, LA, July, ACM
Press/Addison-Wesley Publishing Co., pp. 417–424.

[56] Kingma, D. P., and Welling, M., 2014, “Auto-Encoding Variational Bayes,”
Computing Research Repository, abs/1312.6114.

[57] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y., 2014, “Generative Adversarial Nets,” Advances in
Neural Information Processing Systems 27, Z., Ghahramani, M., Welling, C.,
Cortes, N. D., Lawrence, and K. Q., Weinberger, eds., Curran Associates, Inc.,
pp. 2672–2680.

[58] Yeh, R. A., Chen, C., Yian Lim, T., Schwing, A. G., Hasegawa-Johnson, M., and
Do, M. N., 2017, “Semantic Image Inpainting With Deep Generative Models,”
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, July 21–26, pp. 6882–6890.

[59] Ivanov, O., Figurnov, M., and Vetrov, D., 2018, “Variational Autoencoder With
Arbitrary Conditioning,” International Conference on Learning Representations,
New Orleans, LA, May 6–9, preprint arXiv:1806.02382.

[60] Sharma, S., and Purwar, A., 2020, “Using a Point-Line-Plane Representation for
Unified Simulation of Planar and Spherical Mechanisms,” ASME J. Comput.
Inform. Sci. Eng., 20(6), p. 061002.

[61] Purwar, A., and Ge, Q. J., 2005, “The Effects of Weights in Rational Motion
Design,” ASME J. Mech. Des., 127(5), pp. 967–972.

[62] Piegl, L., and Tiller, W., 1995, The NURBS Book, Springer, Berlin.
[63] Dam, E. B., Koch, M., and Lillholm, M., 1998, Quaternions, Interpolation and

Animation, Vol. 2, Citeseer.
[64] Kühnel, W., 2015, Differential Geometry (Student Mathematical Library),

American Mathematical Society, Providence, RI.

021003-10 / Vol. 22, APRIL 2022 Transactions of the ASME

http://dx.doi.org/10.1177/0954406211416176
http://dx.doi.org/10.1177/0954406211416176
http://dx.doi.org/10.1115/DETC2020-22731
http://dx.doi.org/10.1115/DETC2020-22731
http://dx.doi.org/10.1115/DETC2020-22731
http://dx.doi.org/10.1115/1.3267382
http://dx.doi.org/10.1115/1.4007447
http://dx.doi.org/10.1115/1.4007447
http://dx.doi.org/10.1115/1.4035528
https://doi.org/10.1115/1.2916925
http://dx.doi.org/10.1016/S0094-114X(98)00048-2
http://dx.doi.org/10.3901/CJME.2015.0105.003
http://dx.doi.org/10.1115/1.4038305
http://dx.doi.org/10.1115/1.2826118
http://dx.doi.org/10.1115/1.1330269
http://dx.doi.org/10.1115/DETC2014-35218
http://dx.doi.org/10.1115/DETC2014-35218
http://dx.doi.org/10.1115/DETC2014-35218
http://dx.doi.org/10.1115/DETC2014-35218
http://dx.doi.org/10.1115/DETC2020-22718
http://dx.doi.org/10.1115/DETC2020-22718
http://dx.doi.org/10.1115/DETC2020-22718
http://dx.doi.org/10.1115/DETC2013-12969
http://dx.doi.org/10.1115/DETC2013-12969
http://dx.doi.org/10.1115/DETC2013-12969
http://dx.doi.org/10.1115/DETC2013-12969
http://dx.doi.org/10.1115/1.4033251
http://dx.doi.org/10.1115/1.4039064
http://dx.doi.org/10.1115/1.4039064
http://dx.doi.org/10.1115/1.4042054
http://dx.doi.org/10.1115/1.2919181
http://dx.doi.org/10.1115/1.3669870
http://dx.doi.org/10.1115/1.2916909
http://dx.doi.org/10.1115/1.2916909
http://dx.doi.org/10.1145/344779.344972
http://dx.doi.org/10.1145/344779.344972
http://dx.doi.org/10.1115/1.4046817
http://dx.doi.org/10.1115/1.4046817
http://dx.doi.org/10.1115/1.1906263

	1 Introduction
	2 Data Generation
	3 Data Preprocessing
	3.1 Data Cleanup
	3.2 Data Normalization
	3.3 Data Balancing
	3.4 Data Augmentation
	3.5 Data Masking

	4 Machine Learning Model Training
	4.1 Training the Variational Autoencoder
	4.2 Creating a Hierarchical Database

	5 Mechanism Synthesis for the Spatial Alt–Burmester Problem
	6 Examples
	7 Conclusions
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 References

