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Abstract of the Thesis

Web-based Mixed Synthesis of Planar Four-bar Mechanisms

by

Shashank Sharma

Master of Science

in

Mechanical Engineering

Stony Brook University

2018

This thesis presents MotionGen 2.0, a Web-based application for Path,

Motion and Mixed synthesis. MotionGen 2.0 has been developed to work

across the web and also as a mobile app.

Synthesis of mechanisms has remained the holy grail for machine designers

for a long time now. The inherent mathematical complexity of synthesis

has prevented widespread design automation in the field. MotionGen2.0

proposes to fix this gap by introducing a user-centric design package capable

of motion, path and mixed synthesis of four-bar linkages. Combined with its

extensive simulation capability and feature-rich environment, it will empower

professionals and students to create, invent and innovate.
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Chapter 1

Introduction

Maker culture is a new trend built upon DIY and hacker movement which
encourages the creation of new devices and tinkering with the old. It spans
electronics, robotics, 3-D printing, metalworking, and woodworking. The rise
of the maker culture is closely associated with the rise of hackerspaces, Fab
Labs and other “makerspaces” where like-minded individuals share ideas,
skills, and tools. University campuses have especially been a hotbed for
makerspaces. With the rise of cheap 3-D printing technologies and low-cost
sensors, actuators, and micro-controllers, manufacturing tools have become
accessible to many.

Thus, with the recent maker-movement and democratization of manu-
facturing capability, the creation of new devices is within everyone’s grasp.
However, there is still one missing piece. There is a total lack of machine
design tools for mechanism synthesis which can be used by creators. Unfor-
tunately, design theory for even the simplest of mechanism i.e. a four bar
is too complex for the uninitiated. This chasm needs to be filled for real
innovation to thrive.

The purpose of this thesis is twofold. First, a discussion of existing and
new algorithms which can automate the process of path and mixed synthesis
of four-bar mechanisms is carried out in detail. Use of local and global
optimization routines to generate prospective the solution is explored. The
focus is on getting the user a good approximate solution in short period of
time.

Secondly, an actual web-based application called MotionGen2.0 is created
to implement the proposed algorithm which can be used by creators. User
interaction and productivity have been kept as the centerpiece. The appli-
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cation is scalable by design and accessible to everyone through the web and
mobile app. With the availability of MotionGen2.0, professionals and stu-
dents will now be able to unleash their imagination. Empowering the right
people using the right tools is the motivation for this work.

Fig. 1.1 represents the areas this thesis focuses on in a pictorial format.
Clarity in the exact scope of discussion is essential to understanding. It
enforces that Path and Mixed synthesis of four-bar mechanisms are discussed.
A brief review of Motion synthesis is also present. Function generation lies
outside the scope of this thesis. In addition, synthesis of serial coupled chains
has also been dealt with.

Figure 1.1: Focus areas of this thesis in Mechanism Design domain (Green-
areas where new contributions made, Yellow- areas reviewed, Red- areas not
covered)

2



Chapter 2

Path Synthesis

Mechanism synthesis problem can mostly be classified into path, motion and
function synthesis problems. Each of these problems has been too complex
to be solved for a generalized n-bar one d.o.f. mechanism. Thus, most
of the literature deals with synthesis problem for the simplest case in the
family of all one d.o.f mechanisms, the 4-bar mechanism. Different types of
possible joints (revolute or prismatic) and coupler point motion (closed or
open) introduces further complexities into the system. Many analytic and
approximate approaches have been proposed in an attempt to solve these
problems. In this chapter, the focus is on Path synthesis problem for 4-bar
mechanisms.

2.1 Literature review

Path Synthesis problem can be described as calculating a mechanism whose
coupler point passes through a set of user-defined path points. A sample
path synthesis problem solution is shown in Fig. 2.1 where the cross-hairs
represent user-inputted path points. The visible mechanism has been cal-
culated such that its coupler point closely passes through the path points.
Input path points are specified by their x and y coordinates. The mechanism
is defined using a set of nine parameters i.e. (l1, l2, l3, l4, x0, y0, θ1, r, α) where
l1, l2, l3, l4 are the link lengths, x0, y0 are the actuating fixed pivot coordi-
nates, θ1 is the fixed link orientation and r, α are coupler point parameters.
These mechanism parameters have been visualized in Fig. 2.2.

Thus in a path synthesis problem, n sets of (x, y) path point coordi-
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nates are used to calculate nine design parameters (l1, l2, l3, l4, x0, y0, θ1, r, α)
representing a four bar mechanism. The input path points and synthesized
mechanism parameters for Fig. 2.1 are shown in Table 2.1 and Table 2.2.

Figure 2.1: An example of Path Synthesis problem

Table 2.1: Input Path Points for Path Synthesis problem shown in Fig. 2.1

X Y

−3.158 −2.030
−2.331 −0.677
−0.351 −0.589
1.003 0.363
0.100 −1.930

Table 2.2: Synthesized mechanism parameters for Path Synthesis problem
shown in Fig. 2.1

l1 l2 l3 l4 x0 y0 θ1 r α

2.984 1.367 1.689 3.084 −0.726 2.067 −3.137 3.944 0.178

Path synthesis can be solved analytically for 4-bar mechanisms and gives
exact solutions. Analytical methods include algebraic methods [1–3], com-
plex number methods [4] or displacement matrix methods [5]. However, it

4
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Figure 2.2: Visualization of parameters describing a four-bar mechanism

can handle only up to 9 path points above which the system of equations be-
comes over-constrained. Also, these solutions suffer from branch and circuit
defects which make the practical use of results questionable. Even the exact
results up to 9 path points are extremely complex and can rarely be calcu-
lated. To counter these drawbacks, path synthesis problem can be solved
using an approximation. These methods can handle any number of path
points. However, compromise on accuracy is made in favor of approximate
solutions.

Most of the approximation techniques restructure the synthesis problem
into an optimization problem [6–16]. These techniques are characterized by
three major entities- domain space variables, objective function and opti-
mization algorithm. Domain space variables depend on our reformulation
of problem. Objective function is the measure of how good a prospective
mechanism is in fulfilling our target path requirements using domain space
variables. Optimization algorithm can be broadly classified as global/local
or deterministic/stochastic. There is no best algorithm and use of each de-
pends on problem. A fast, accurate and easy to code/formulate optimization
is desirable.

In practical problems, the designer is interested in the general shape of
coupler path rather than a small number of precision points on coupler path.
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Thus, path synthesis can be formulated as a problem in the area of Shape
Analysis [13,16–19] by interpolating a curve using path points. By converting
point fitting problem to curve matching problem, possible output mechanisms
have been constrained to practical ’smooth’ choices and usually rejects huge
displacements in between precision points. To compare two curves, a metric
need to be established which tends to zero for similar curves. Various metrics
like distance measures, Fourier descriptors [20], wavelets [21], cumulative
angular deviant [13], etc. have been used over the years to compare two
curves. Frechet distance, Dynamic time warping or basic sample euclidean
distance are the predominant distance measures which have been used for
curve matching using point sampling [22].

Standardization of curve data using Procrustes analysis can be done for
better shape matching [23] which involves optimal translation, scaling and
rotation of curves for matching, determined using a variety of mathematical
formulations. Standardization also helps isolate variables in synthesis prob-
lems which are dependent on location, orientation and scale, hence reducing
domain space variables in our optimization function. All these operations are
valid for synthesis problems because the domain space variables are invariant
under them.

The coming sections focus on solving the path synthesis problem using
two methods, namely, Fourier based path approximation and Frenet frame
based path approximation. Original contribution in Fourier based path ap-
proximation involves point sampling re-parameterization to generate better
task curves. Frenet frame based path approximation involves formulating the
path synthesis problem into motion synthesis problem as its easier to solve
using the technique of kinematic mapping and singular value decomposition.
Technical details on both the methods have been elaborated in the following
sections.

2.2 Fourier based Path Approximation

2.2.1 Path Synthesis Algorithm Review

Fourier based path synthesis fits the four-bar Coupler path to a computed
Task path. Task path is a curve interpolating or approximating input path
points, described using Fourier coefficients. Coupler path is a curve which is
traced by coupler point for some four-bar mechanism. Task path and four-
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bar Coupler path for the Fourier based path synthesis have been visualized
in the Fig. 2.3. Their Fourier descriptors, which will be discussed soon, are
given in Table 2.3.

Figure 2.3: Visualization of Task path and Coupler coupler for Fourier based
path synthesis algorithm

Table 2.3: Task path and Coupler path Descriptor Data shown in Fig. 2.3

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−2 −0.4779 + 0.1294i 0.4951 −0.4214 + 0.222i 0.4763

p=−1 −1.213 − 1.033i 1.5935 −1.164 − 1.062i 1.5757

p=0 −0.9959 − 1.089i 1.4758 −0.9959 − 1.089i 1.4758

p=1 −0.6851 − 0.09537i 0.6917 −0.6851 − 0.09537i 0.6917

p=2 0.2141 + 0.05825i 0.2219 0.2752 − 0.08812i 0.2889

The Fourier based path synthesis algorithm is a two step process. First, an
optimum Task Path using the user-inputted path points is calculated. The
subsequent motivation is to find a mechanism whose Coupler path closely
approximates the Task path. Detailed methodology has been discussed in
sections below. Work done by [24–26] on path synthesis of a four bar mech-
anism using this approach is summarized in this section.
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2.2.1.1 Calculation of Task Path

The initial objective is to convert inputted points into a task path. Path
points inputted by the user can vary practically from one to infinity. For
one to three points, the solution is a trivial single link whose rotation form
a circle on which up to three points fall. Thus, no mechanism needs to be
generated in these cases. This algorithm handles greater than 4 path points
and processes them to give a task path curve.

Any closed curve can be described mathematically using periodic func-
tions. Fourier basis prove to be exceptionally suited to the task since they
have the ability to represent all the possible periodic functions. Let a path
be defined by z(t) = x(t)+ iy(t) where x and y are the coordinates of a point
on the curve and i is the imaginary unit, then

z(t) =
∞∑

m=−∞

ame
2πmit ∀ t ∈ [0, 1) (2.1)

where m are the frequencies, am are the Fourier coefficients and t is the time
parameter periodic over [0, 1). The ‖m‖th frequency is called as Harmonics.
For example, first harmonic involves the curves described by frequencies m =
1,−1. The above Fourier curve can also be described for discrete data using
uniform parametrization as follows

z

(
2πk

N

)
=

∞∑
m=−∞

ame
mi( 2πk

N ) ∀ k ∈ [0, N − 1] (2.2)

where k is the sample point index and N is the total number of sample
points. Thus, a series of points can easily be used to recover the curve they
represent using Discrete Fourier Transform (DFT). The representation of
curve is dependent on Fourier coefficients which can be calculated by

am =
1

N

N−1∑
k=0

zke
−mi( 2πk

N ) (2.3)

For nonuniform time sampling, a slightly different formulation for Fourier
coefficients is calculated using trapezium rule.

am =
1

2
[zi+1 + zi]e

−2πmit (2.4)
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The task curve is defined using such a Fourier basis i.e. is a collection of
sine and cosine functions of varying frequencies. The total number of these
functions are fixed for a good enough task curve estimation within acceptable
computation time. Consequently, maximum number of harmonics used in
literature has been 7 harmonics or 15 Fourier coefficients. A limited number
of these functions are sufficient to describe a simple path approximating the
path points. With a large number of harmonics, we run into the problem of
over-fitting the sample data. Also, considering a high number of harmonics
when the input points are low leads to many free harmonics which gives the
curve unnecessary finer detail not specified by the user.

There is infinite possibilities of drawing a curve between the inputted
path points. The optimum task curve is calculated to exactly fit or best
approximate the inputted path points. The optimizing metric used is the
usual P2 norm of point-to-point euclidean distance difference.

However, there lies a problem in the Fourier curve description. The cou-
pler curves to four bar mechanisms can be open or closed paths depending on
the permissible rotation of the driven link, while the Fourier curves only work
with closed paths. To counter this inherent limitation of Fourier curves, an-
other similar construct called trigonometric polynomial curve is used which
describes the Task path as

z(t) =

p∑
m=−p

αme
ωomit ∀ t ∈ [0, T ], T < 1 (2.5)

where T is the interval over which the curve is defined.
Since DFT is not applicable, the approximation of such a curve uses least

square fitting approach. As a result, the coefficients received are not Fourier
coefficients unless the fitting is applied to a closed path. For the sake of
convenience, they have been termed as Fourier descriptors. The least square
problem can be formulated as

∆ =
n∑
i=1

∥∥∥∥∥z(ti)−
p∑

k=−p

αke
ikωoti

∥∥∥∥∥
2

(2.6)

Analytically solving the least square problem gives a linear system of
equation. This can be solved to find the descriptors which best fits the input
path points. This system of equation can be defined as follows

ΩX = Y (2.7)
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where
X = [. . . , αm, . . . ]

T

m→
(2.8)

Ω =

 · · ·
...
∑n

i=0 e
i(k−m)θi

...
· · ·


k→

m ↓ (2.9)

Y = [. . . ,
n∑
i=0

z(ti)e
−imθi , . . . ]T

m→

(2.10)

Here, k and m vary from -p to p. LU decomposition can be used to solve the
above system.

Further details for deriving the above relations are available in [24].
The domain for the open task path representing inputted path points

remains unknown and can range anywhere from (0, 2π]. Finding this domain
(T ) is a one-dimensional optimization problem for minimum error measure
defined in Eqn. 2.6. Once the parameter distribution and total domain of
open curve are calculated, the target curve is fully defined.

2.2.1.2 Calculation of Four-bar Coupler Path

In this section, equation of coupler point for a four-bar mechanism is approx-
imated using its loop closure equation. The mechanism is represented by the
design parameters x0, y0, l1, l2, l3, l4, r, θ1, α, φ0 as displayed in Fig. 2.2.
Finding the relation between coupler angle (λ) and input crank angle (φ)
leads to the expression

eiλ =
−B(φ)±

√
∆1(φ)∆2(φ)

2A(φ)
(2.11)

where
A(φ) = l3(l2e

−iφ)− l1 (2.12)

B(φ) = l21 + l22 + l23 − l24 − 2l1l2 cos(φ) (2.13)

∆1(φ) = l21 + l22 − (l3 + l4)2 − 2l1l2 cos(φ) (2.14)

∆2(φ) = l21 + l22 − (l3 − l4)2 − 2l1l2 cos(φ) (2.15)
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The ± sign in the equation represents the two different configurations of a
four bar mechanism. It must be noted that this function is periodic as it
consists of only trigonometric functions.

However, the Eqn. 2.11 only gives meaningful results when the following
feasibility condition is followed

∆1(φ)∆2(φ) ≤ 0 (2.16)

Thus, this Eqn. 2.16 constraints the interval over which angle φ exist. The
maximum it can range is [0,2π] in the case it represents a closed curve.

Eqn. 2.11, being a periodic function when φ=[0,2π], can be rewritten
using Fourier basis as

eiλ =
∞∑

k=−∞

Cke
ikφ (2.17)

Only a small group of Ck associated with low harmonics is considered to
approximate eiλ, just like in approximation of Task path. When φ varies
only in some part of [0,2π], the least square curve fitting method is used
to calculate coefficients. The coefficients Ck are calculated numerically by
sampling points on the function according to the previous parametrization,
evaluating the function on each point based on crank angle and length ratios
and then least square curve fitting the results to get an approximate solution.
Finding an analytic closed form solution for each coefficient Ck is not possible.

The analytic equation of coupler point P can be given as

P = A0 + l2e
iθ1eiφ + reiαeiθ1eiλ (2.18)

A0 = x0 + iy0 (2.19)

φ = φ0 + ωt (2.20)

Using the above equations, we obtain

P =
∞∑

k=−∞

Pke
ikωt (2.21)

where
P0 = reiαeiθ1C0 + A0 (2.22)

P1 = reiαeiθ1C1e
iφ0 + l2e

i(θ1+φ0) (2.23)
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Pk = reiαeiθ1Cke
ikφ0|k 6=0,1 (2.24)

Thus, an analytic expression has been calculated to describe the coupler
curve using the mechanism parameters x0, y0, l1, l2, l3, l4, r, θ1, α, φ0. The
objective is to fit this equation to Task curve equation.

2.2.1.3 Fitting Coupler path to Task path

To summarize the above sections, Fourier descriptors Tk have been calculated
using least square curve fitting and the task curve T is defined as

T ≈
p∑

k=−p

Tke
ikΦ (2.25)

In the equation, Φ lies in range [0,Φmax] where Φmax can lie anywhere between
(0,2π].

Also, the coupler path P is approximately represented using Fourier de-
scriptors Pk as

P ≈
p∑

k=−p

Pke
ikωt (2.26)

where ωt also lies in range [0,Φmax]. Since φ = φ0 + ωt, range of φ i.e. input
angle for mechanism is [φ0, φ0+Φmax]. It should be noted that the exact value
of input angle to reach each coupler point depends on the parametrization
of samples i.e. Φi. Each Fourier descriptors Pk has a relation with nine
parameters defining the mechanism.

For a perfect curve matching, Tk = Pk for all k ∈ [−p, p]. This leads to

T0 = C0re
iαeiθ1 + A0 (2.27)

T1 = C1re
iαeiθ1eiφ0 + l2e

i(θ1+φ0) (2.28)

Tk = Ckre
iαeiθ1eikφ0 |k 6=0,1 (2.29)

Thus, the problem of path synthesis involves finding ten optimum design
parameters for a four-bar mechanism, namely

S =

{
l2,
l2
l1
,
l3
l1
,
l4
l1
, x0, y0, θ1, φ0, r, α

}
(2.30)
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The design parameters can be modified such that Tk|k 6=0,1 depends on six
variables instead of seven. Thus the new design variables are

S =

{
l2,
l2
l1
,
l3
l1
,
l4
l1
, x0, y0, θ1, φ0,C, S

}
(2.31)

where
C = r cosα + θ1, S = r sinα + θ1 (2.32)

It is observed that four of the design variables i.e. {l2, x0, y0, θ1} only exist in
the expressions for T0 and T1. As a result, a tenth dimensional search space
has been reduced into a sixth dimensional search space. The four remaining
variables can be fitted exactly using the complex equations for fitting T0 and

T1. The objective now is to search for optimal
{
l2
l1
, l3
l1
, l4
l1
, φ0,C,S

}
.

To find a least square solution to Eqn. 2.29, the minimum for C and S is
calculated by minimizing the following error function

I =
∑
k 6=0,1

|Ckrei(α+θ1+kφ0) − Tk|2 (2.33)

=
∑
k 6=0,1

[(Ak · C−Bk · S− T xk )2 + (Ak · S +Bk · C− T yk )2] (2.34)

where Tk = T xk + iT yk and Cke
ikφ0 = Ak + iBk. Setting partial differentials to

zero and analytically minimizing the error function leads to

C + iS =

∑
k 6=0,1 TkC

∗
ke
−ikφ0∑

k 6=0,1 |Ck|2
(2.35)

As a result, the least square solution to Eqn. 2.29 can be found by optimiza-

tion of four design variables namely
{
l2
l1
, l3
l1
, l4
l1
, φ0

}
. The optimization space

has thus been reduced to a mere four design variables instead of original ten
design variables.

During the discussion, the constraint imposed by the feasibility condition
has been ignored. Thus, to generate valid mechanisms, an extra relation
needs to be satisfied. Rewriting the feasibility condition in terms of four
design variables, we get(

l3
l1
− l4
l1

)2

≤ 1 +

(
l2
l1

)2

− 2

(
l2
l1

)
cosφ ≤

(
l3
l1

+
l4
l1

)2

(2.36)
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All φ in range [φ0, φ0 + Φmax] must satisfy the inequality for the mechanism
to be meaningful. Direct search method has been used as the optimization
method in work by Wu et al. [24]. This completes the review of Fourier based
path synthesis algorithm.

2.2.1.4 Implementation summary

Input: n Path points

Step 1- Find task path Fourier description(Tk);
No. of harmonics, domain limits and parameter distribution

required;

Step 2- Find optimal S1 = {l21, l31, l41, φo,C,S};
Search space is {l21, l31, l41, φo};
Adding φ0 to task parameter gives mechanism parameter;
Check the feasibility condition at all φ in domain;
Find values of eiλ at parameters analytically;
Find Fourier descriptors(Ck) of coupler angle λ numerically;
Find Fourier descriptors(Pk) of coupler point;
Find {C,S} such that |Pk − Tk| is minimized;

Step 3- Find S2 = l2, x0, y0, θ1 using T0, T1;

Output: Optimum mechanism

Algorithm 1: Pseudo-code for Fourier based path synthesis

This section summarizes the above technical details and expresses it in
Pseudo-Code structure in Algo. 1 for enhanced detail.

2.2.2 Search for a better parametrization

The standardized implementations of DFT assume a uniformly sampled data
i.e. the time parameter attached to each parameter is uniform. As a conse-
quence, the Fourier curve fitted carries over time information to the path. In
a purely geometric sense, this behavior is undesired. Although the problem
has been mentioned in [26] no work has been done to find a parametrization
independent representation until very recently in [27] where an approach
to find an optimum parametrization has been proposed to eliminate time
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dependency. The approach tries to use arc length parametrization to cap-
ture the geometric features and eliminate the time parameter. However,
its impossible to arc-length parametrize an unknown coupler curve which is
the path synthesis problem. Thus, the author numerically “guess” the arc
length parametrization using the Task point polygon and thus fail to get a
time-independent parametrization.

However, time parameter is not necessarily an evil entity which needs to
be eliminated. The time dependence of Fourier descriptors can be exploited
to give mechanism designers increased flexibility. The time parameter decides
when the synthesized mechanism moves over each point. By changing the
time distribution, finer control on motion of coupler point can be established.

For example, uniform parametrization results in a target curve where the
end effector takes equal time to pass through each target point. Thus, the
uniform parameter is desired in cases where the relative time between each
target point is required to be same.

Similarly, for cases where the constant speed of end effector over the
target path is required, an arc length parametrization would be desired. An-
alytically, it is not possible to get the arc length parametrization before the
synthesis process but a good approximation is the chord length parametriza-
tion.

Thus, uniform and chord length parametrization are two important pa-
rameterizations which have substantial design use-case. In next section, a
generalized parametrization incorporating both of these cases is presented.

2.2.2.1 Family of parameterizations

In interpolation path finding problems, Chord length based parameteriza-
tions have been used by geometers for a long time. In the case of path
synthesis, formulation in Eqn. 2.6 to define open task curve is valid for any
parametrization, uniform or nonuniform, over a specified domain [0, θ]. This
resultant curve interpolating the input path points can be calculated using
a generalized parametrization called centripetal parametrization. It can be
represented as

t0 = 0 (2.37)

tk =

∑k
i=1 |Di −Di−1|α

L
(2.38)

tn = 1 (2.39)
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where tk represents the parameter for each input path point, Di represents
the cumulative chord length till ith point and L represents the total cumu-
lative chord length till last point. α is the parametrization control variable
such that α ∈ R and α ≥ 0. On varying the control variable α, multiple
parametrization can be generated. It must be noted that uniform and chord
length parametrization are special cares at α = 0 and α = 1. It is interesting
to see the effect these parameterizations have on the task curve.

A sample case, for data listed in Table 2.4, has been shown in Fig. 2.4,
2.5, 2.6 where least square fitted trigonometric curve is generated for five
sample input points using different parametrization techniques. The wiggle
in the first two cases is very apparent in the first two curve. The third curve
is relatively better than the other two. This begs the question, for which
value of α does the best parametrization exists.

Table 2.4: Input Path Point Data to analyze effect on Task path under
different parameterizations

X Y

−6.065 1.541
−4.298 2.218
−2.983 2.519
−0.589 2.444
4.436 −1.779

Figure 2.4: Task curve calculated using Uniform Parametrization (α = 0)
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Figure 2.5: Task curve calculated using Chordal Parametrization (α = 1)

Figure 2.6: Task curve calculated using Centripetal Parametrization (α = .5)
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Thus, the problem now is to select the best parametrization from the
family. Objective it to find specific value of α such that wiggle in the curve
is minimized. This can be done by minimizing the total arc length of the
curve. Analytically, arc length (La) is defined as

La =

∫ √
1 +

(
dz

dt

)2

dt (2.40)

where z is the task curve and t is the time parameter. Closed form solution
for the above integration is not possible.

Fortunately, La can also easily be computed numerically by dividing the
curve into many intervals and approximate these lengths using a line seg-
ment. When the curve is divided into a large number of intervals, a close
approximation can be calculated.

Input: Initial Parametrization (α0)
while Residue > ε do

Move to better αi;
Find new Task curve zi = z(αi);
Calculate Arc length La,i = La(zi);
Calculate Residue=‖La,i − La,i−1‖;

end
Output: Minimum parametr1ization (α)

Algorithm 2: Pseudo-code for calculating the optimum parametriza-
tion

Thus, finding the best parametrization is a one-dimensional minimization
problem with objective function equal to arc length. The algorithm can be
summarized in Algo. 2.

Fig. 2.7 displays the Task curve for optimal parameterization with mini-
mum arc length is at α = .4875 for the sample test-case. Fourier descriptors
for each curve are described in Table 2.5.

2.2.2.2 Design-centric Constraints

Design problems come in many flavors. Usually, large variation in end effector
speeds is not the designers intent. The larger the changes in speed, the larger
are the forces induced on links which make Dynamic analysis indispensable
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Figure 2.7: Task curve calculated using Optimum Parametrization (α =
.4875)

Table 2.5: Task path Descriptor Data for Parameterizations in
Fig. 2.4, 2.5, 2.6, 2.7

Task path α = 0 Task path α = 1

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−2 −1.953 − 0.08941i 1.9552 −0.4244 + 1.532i 1.5893

p=−1 −1.355 − 2.423i 2.7763 −4.508 − 2.595i 5.2015

p=0 −1.91 + 1.404i 2.3700 1.727 + 0.4681i 1.7890

p=1 0.1551 + 1.477i 1.4847 −1.892 + 3.221i 3.7360

p=2 −1.002 + 1.174i 1.5433 −0.9668 − 1.085i 1.4533

Task path α = .5 Task path α = .4875

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−2 −1.159 + 0.9341i 1.4888 −0.7192 + 0.9789i 1.2147

p=−1 −2.539 − 2.55i 3.5983 −2.759 − 1.96i 3.3841

p=0 −0.7293 + 1.054i 1.2816 −1.033 + 1.025i 1.4555

p=1 −0.4324 + 2.173i 2.2154 −0.6791 + 1.752i 1.8792

p=2 −1.205 − 0.06939i 1.2075 −0.8745 − 0.2552i 0.9110
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in these cases. These large forces can even compromise the rigidity of links
making the kinematic analysis useless.

However, uniform speed over the complete motion of end effector is not
the ideal solution to this problem. Some degree of speed change is impor-
tant in mechanisms like quick return mechanism. Thus, the possibility of
specifying speed restrictions would greatly benefit the designer.

The ratio of coupler point’s maximum speed to minimum speed has been
used as control variable denoted as Sr. Sr is always greater than one. The
user’s main interest while designing is to reject mechanisms which do not
satisfy Sr for the design problem. For example, the user might want relatively
uniform speed mechanisms with Vr < 2. This helps the user narrow down
on the particular parametrization which has less wiggle and satisfies speed
criteria.

Rewriting the formulation for target path Eqn. [2.5] here for reference,

z(t) =

p∑
m=−p

αme
ωomit ∀ t ∈ [0, T ], T < 1. (2.41)

Differentiating the above path curve gives the velocity function as

v(t) =

p∑
m=−p

mβme
ωomit (2.42)

where βm = iωoαm. To analytically find the maximum and minimum veloci-
ties, roots of derivative of Eqn. [2.42] are needed. Then, values of their second
derivative at the roots will determine if its a maximum or minimum. Unfor-
tunately, root finding problem for any function is an optimization problem
in itself.

To avoid the use of optimization, max and min speeds can be found
out by sampling the curve and directly finding the values of velocity using
Eqn. [2.42]. The magnitude of this complex velocity gives us speed. By taking
a large number of samples, a good approximation of Sr can be achieved.

The designer specifies a lower speed ratio bound (Sr,min) and upper speed
ratio bound (Sr,max). Mechanisms of interest lie exclusively in this region. If
no limitations are enforced by the user, then taking Sr,min = 1 and Sr,max =
∞ includes all the possible parameterizations.

Penalty functions have been used to convert a constrained optimization
problem to an unconstrained one. Literature describing different types of
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internal and external penalties is rich. The quadratic penalty function is
used to include these constraints within the objective function to find the
relevant mechanisms. The inequality constraints are

Sr,min ≤ Sr(z) ≤ Sr,max (2.43)

which can be rewritten as following inequalities.

g1(z) : Sr(z)− Sr,min ≥ 0 (2.44)

g2(z) : Sr,max − Sr(z) ≥ 0 (2.45)

Thus, the final objective function to minimize becomes

f(z) = La(z) + P (max(0,−g1(z)) +max(0,−g2(z)))2 (2.46)

where z is task curve, La is arc length, g1, g2 are constraints and P is the
penalty. Tweaking P can lead to good results numerically.

Thus, a method to find a target Fourier curve which has minimum wig-
gle and is constrained by min- max speed has been outlined above. Using
this methodology, the influence of time parametrization on the path is ef-
fectively minimized. If the design requirement is of uniform time or speed
parametrization, α can directly be set to 0 or 1.

2.2.3 Optimization Algorithms

To implement path synthesis, selection of optimization algorithm [28] is a
pivotal step. A fast, accurate and simple optimization is desirable. Unfortu-
nately, no such ideal algorithm exists and trade-offs need to be made. Speed
is the most important attribute in practical scenarios. A fast method which
gives approximate solution is desirable to a slow and exact method. Thus, al-
though a global minimum is desirable, local minima can be good prospective
solutions.

2.2.3.1 Direct Search Method

One of the easiest local optimization methods available is the direct search
method. It requires no differentiability condition on the defined error func-
tion. A random point in search space can be taken as the starting point. The
algorithm then searches in each coordinate direction one after another to find
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the minimum error. This is repeatedly done until the algorithm converges
to a minimum. Although this algorithm is very simple to understand and
implement, the convergence is slow and it reevaluates the objective function
a large number of times.

2.2.3.2 Nelder-Mead Method

Another local optimization method called Nelder-Mead or downhill-simplex
method also solves multidimensional unconstrained optimization without
derivatives. What makes this particular algorithm attractive is that it car-
ries out the error function evaluation less number of times and tries to reuse
information from previous iterations. Also, it converges at a faster rate as it
is not constrained in any specific direction. Thus, Nelder-Mead optimization
is a better method even though it’s more complex and harder to implement.

Both direct search and Nelder-Mead methods find local minima which are
not the best possible solution. Running these methods with different start
points in optimization space will give us different minima. The best of these
discovered local minima is usually a pretty good practical solution.

2.2.3.3 Monte-Carlo Method

To find the global minima, a global optimization method like Direct Monte-
Carlo sampling can be used. This is a brute force method in which, random
points from optimization space sampled and the error function is evaluated.
The more points are sampled, the better the probability of discovering the
minima. However, it’s impractical as it requires too much time to converge.
This simple method can be used in combination with local optimization
method to increase the convergence rate.

2.2.3.4 Simulated Annealing

Another global optimization method is simulated annealing. A temperature
variable varies from high to low over the process of simulation. The higher
the temperature, the higher is the probability of selecting a worse solution
in the neighborhood. The pseudo-code has been summarized in Algo. 3.

As is apparent, implementation of simulated annealing requires setting
variables like initial temperature, cooling rate, cooling steps, max steps per
temperature change, the definition of neighborhood and acceptance function.
Specification of each need to be discussed for the syntheses problem.
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Input: Some solution (x0)
Set current solution (x← x0);
Set current temperature (t← t0);
for Cooling steps (i← 1 : Stepc) do

Calculate current error (E ← Cost(x));
for Temperature change steps (j ← 1 : Stept) do

Find random solution in neighborhood
(xnew ← Neighborhood(x));

Calculate error for new solution (Enew ← Cost(xnew));
if Acceptance criteria fullfilled
(Probmove(E,Enew) ≥ random(0, 1)) then

Move to new solution (x← xnew);
else

break;
end

end
Lower temperature (t← t× cooling rate) ;

end
Output: Minimum solution (x)

Algorithm 3: Pseudo-code for Simulated Annealing
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The cooling schedule of simulated annealing is fully specified by initial
temperature, cooling rate, and cooling steps. The effective cooling schedule
is essential to reduce the amount of time required to find the optimum solu-
tion. The initial value of temperature must be high enough so that any new
solution generated in the neighborhood should be accepted with a certain
probability close to 1. This ensures free movement infeasible solution space
and that the final solution is independent of the start point. The cooling
rate is usually taken as an exponential function of multiplicative monotonic
form tk = t0 × C where C is the cooling rate, t0 is the initial temperature
and tk is the temperature at kth step. The value of C is problem specific and
fluctuates between .8 and .999 for practical scenarios. The total number of
cooling steps for the algorithm depends on when the temperature becomes
almost zero. At zero temperature, the algorithm stops selecting worse solu-
tions and thus it finds the local optimum point in the region. Cooling steps
also help bound the runtime of the algorithm by limiting the iterations to a
specific number. For this problem, (initial temperature, cooling rate, cooling
steps) were taken as (104, .8, 102);

The neighborhood functions are usually uniform distributions with prob-
abilities proportional to the size of the neighborhood. It is typically not
temperature dependent. If the neighborhood size is small compared to total
solution space, movement across the solution space is too slow. However, if
the neighborhood size is large, the algorithm is unable to focus on a specific
area where the optimal point might exist. Thus, neighborhood size is ex-
tremely problem specific. For path synthesis problem, the neighborhood of
optimization variables φ0,

l2
l1
, l3
l1
, l4
l1

have been defined as

φnew = φ0 + φsize × (2× rand(0, 1)− 1) (2.47)

l21new = l21 + l21
(2×rand(0,1)−1)
size (2.48)

l31new = l31 + l31
(2×rand(0,1)−1)
size (2.49)

l41new = l41 + l41
(2×rand(0,1)−1)
size (2.50)

where (φsize, l21size, l31size, l41size) represent the size of neighborhood. For
this problem, ( π

10
, 1.5, 1.5, 1.5) specifies the sizes of each optimization variable.

These values have been used in our implementation but are in no ways the
best possible values. Thus, for our implementation, the neighborhood size
remains constant and does not reduce with temperature.
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At each temperature, the algorithm needs to run many times to get a good
estimate of the neighborhood. This ensures that we move to a better point if
it exists in the neighborhood. Another sensible heuristic is to ensure possible
movement across solution space within each temperature state to ensure the
algorithm spans the design space in totality. This is done by calculating
maximum steps per temperature change according to the neighborhood size.
It makes sense that the smaller the size, the larger the number of steps
for a specific temperature to move from one extreme to another in solution
space. These steps per temperature state vary from 100 to 1000 in practical
problems. For path synthesis, this has been taken only as 50. This is mostly
to speed up calculation at the cost of accuracy.

Simulated annealing prevents itself from getting stuck in local minima
by occasionally selecting a worse candidate solution than the present one.
The probability of selecting the new position in design space is governed by
the acceptance probability function. It takes in the errors of old and new
positions and gives us the feasibility/probability of the move. The usual
acceptance criteria can be defined as

P (acceptance) =

{
1 if neighbor cost(c∗) ≤ solution cost(c)

e−
c∗−c
t if neighbor cost(c∗) > solution cost(c)

(2.51)

Once the acceptance probability is calculated, it’s compared to a randomly-
generated number between 0 and 1. If the acceptance probability is larger
than the random number, the new point is deemed feasible and is made the
new solution. Thus, according to the equation, the acceptance probability of
a better solution is always 1. The worse the error for the new solution, the
lesser is the probability of move. The probability of accepting a worse solution
also decreases with a decrease in temperature. When the temperature reaches
zero, the probability to accept a bad solution is zero and only better solutions
are accepted.

The objective function is problem specific and calculates a cost/error
associated with any feasible point in design space. In case of path synthe-
sis, Eqn. 2.33 defines the error function. Within the objective function, the
constraint Eqn. 2.36 is also checked and is defined infinite for infeasible pa-
rameters.

Thus, all the details to solve the path synthesis problem using simulated
annealing has been detailed. It must be noted, given the extremely fast
runtime of the implementation, the solution found might not be a minimum
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at all. However, since the algorithm converges onto the region gradually, it
can be said, with some confidence, that the global minima are in the region
of solution returned by the algorithm. Nelder Mead local search algorithm
can be applied to the result to converge quickly to a minimum in the region.
The focus of this implementation is the fast calculation of an approximate
solution.

It must be mentioned that the rate of convergence to a result for the algo-
rithm is extremely sensitive to the parameters defining simulated annealing
optimization. Being a heuristic algorithm, the guidelines given above, with
a healthy dose of hit and trial, were used to find a set of parameters which
works satisfactorily. However, the assurance of these parameters being the
best for our targeted speed and accuracy cannot be proved. The optimum
parameters for intended accuracy-speed tradeoff can possibly even vary for
different inputs paths which makes fixing them, an even harder problem.

2.2.4 Summary of Algorithm

A brief overview of complete path synthesis algorithm has been presented in
this section.

Input: Set of Path points
Calculate Task curve Fourier descriptors;
Find the optimum 4 parameters by minimizing error;
Calculate the remaining parameters;
Output: Four-bar mechanism parameters

Algorithm 4: Pseudo-code for Path Synthesis

2.2.5 Results

In this section, the proposed algorithm’s performance is tested for the existing
uniform parameterization and the newly proposed optimum parametrization
for Fourier based Path Synthesis algorithm.

2.2.5.1 Synthesizing Existing Mechanisms

To test the ability of Path Synthesis to create existing mechanisms, a sample
mechanism is taken, points from its coupler path are sampled and then a
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mechanism is synthesized which goes through the sampled points. Ideally,
we should get the exact same mechanism. However, a similar mechanism is
also acceptable since the premise is of approximate synthesis.

A sample mechanism as visualized in Fig. 2.8 has been used to generate
coupler path positions. The mechanism has been defined using the position of
its fixed pivots, moving pivots and coupler coordinates as shown in Table 2.6.
Coupler curve of this mechanism is sampled and used as input for Path
Synthesis algorithm. The least square curves are approximated with seven
Fourier Descriptors for these test cases.

Figure 2.8: Path data Generator mechanism used to analyze effect on Path
Synthesis under different parameterizations

Table 2.6: Path data Generator Mechanism design parameters as shown in
Fig. 2.8

Point X Y

Link 2 Fixed Pivot −2.20 0.10
Link 2 Moving Pivot −0.97 0.20
Link 3 Fixed Pivot 1.15 0.38
Link 3 Moving Pivot −2.32 3.51

Coupler Point −0.825 −1.033
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Test case 1

Coupler curve data can be sampled randomly or uniformly over the input
angle intervals. First, we compare the use of optimum and uniform param-
eterizations for uniformly sampled data. The sampled data used for testing
is given in Table 2.7. Fig. 2.9 represents the uniform parameterization case
while Fig. 2.10 represents the optimum parameterization case. Table 2.8 and
Table 2.9 contains the Fourier descriptor and Synthesized mechanism data
for uniform parametrization while Table 2.10 and Table 2.11 shows same for
optimum parameterization. It can be observed that both uniform and op-
timum parametrization yields good results. They approximate the original
mechanism well when Coupler path has been sampled uniformly.

Table 2.7: Test case 1: Input uniformly sampled point data to analyze effect
of Path Synthesis under different parameterizations

X Y

−0.8253 −1.0329
−1.6554 −0.2721
−2.6392 0.292
−3.5027 0.3088
−4.0549 −0.2141
−4.1022 −1.0521
−3.5805 −1.8708
−2.625 −2.3408
−1.5557 −2.2742
−0.8016 −1.7382

Test case 2

Second, we compare the use of optimum and uniform parameterizations for
non-uniformly sampled data. The sampled data used for testing is given
in Table 2.12. Fig. 2.11 represents the uniform parameterization case while
Fig. 2.12 represents the optimum parameterization case. Table 2.13 and Ta-
ble 2.14 contains the Fourier descriptor and Synthesized mechanism data for
uniform parametrization while Table 2.15 and Table 2.16 shows same for op-
timum parameterization. In this case, the results are drastically different.
Optimum parameterization yield way better result than uniform parameter-
ization. Also, the uniform parameterization result is fundamentally different

28



Figure 2.9: Test case 1: Synthesized mechanism for uniformly sampled input
using uniform parametrization

Figure 2.10: Test case 1: Synthesized mechanism for uniformly sampled input
using optimum parametrization
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Table 2.8: Test case 1: Task path and Coupler path Descriptor Data for
Fig. 2.9

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−3 0.02016 − 0.0138i 0.0244 0.02259 − 0.01406i 0.0266

p=−2 0.0526 − 0.05623i 0.0770 0.05239 − 0.05593i 0.0766

p=−1 0.1256 − 0.2511i 0.2808 0.1254 − 0.2513i 0.2808

p=0 −2.544 − 1.017i 2.7399 −2.544 − 1.017i 2.7399

p=1 1.488 + 0.252i 1.5096 1.488 + 0.252i 1.5096

p=2 0.01475 + 0.04111i 0.0437 0.01394 + 0.04085i 0.0432

p=3 0.004255 + 0.009628i 0.0105 0.003527 + 0.005555i 0.0066

Table 2.9: Test case 1: Synthesized mechanism parameters Data for Fig. 2.9

l1 l2 l3 l4 x0 y0 θ1 r α φ0

4.169 1.728 4.363 4.066 −3.358 −0.103 0.261 1.295 −0.150 6.064

Table 2.10: Test case 1: Task path and Coupler path Descriptor Data for
Fig. 2.10

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−3 0.01488 − 0.01291i 0.0197 −0.001126 − 0.01555i 0.0156

p=−2 0.05154 − 0.03428i 0.0619 0.04002 − 0.02767i 0.0487

p=−1 0.1264 − 0.1975i 0.2345 0.1269 − 0.1946i 0.2323

p=0 −2.467 − 1.059i 2.6852 −2.467 − 1.059i 2.6852

p=1 1.481 + 0.2157i 1.4965 1.481 + 0.2157i 1.4965

p=2 −0.04032 − 0.004176i 0.0405 −0.06052 − 0.008252i 0.0611

p=3 0.004025 + 0.0632i 0.0633 0.003789 + 0.002891i 0.0048

Table 2.11: Test case 1: Synthesized mechanism parameters Data for
Fig. 2.10

l1 l2 l3 l4 x0 y0 θ1 r α φ0

4.303 1.362 1.799 3.939 −2.459 −0.564 −0.601 0.597 −2.050 0.617
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from the initial mechanism which was a crank-rocker mechanism. Thus,
at-least for existing mechanisms, we can conclude that optimum parameter-
ization is way better at handling generalized input path data that uniform
parameterization.

Table 2.12: Test case 2: Input non-uniformly sampled point data to analyze
effect of Path Synthesis under different parameterizations

X Y

−0.8253 −1.0329
−1.2488 −0.6005
−1.7546 −0.1982
−2.3253 0.1599
−2.6153 0.2839
−2.9181 0.3599
−3.2869 0.3634
−3.5212 0.3017
−3.9349 −0.0109
−4.0380 −0.1780
−4.1510 −0.6345
−4.1444 −0.8304
−4.1023 −1.05203
−4.0594 −1.1848
−3.9470 −1.4231
−3.5411 −1.9049
−3.2360 −2.1158
−2.5438 −2.3554
−1.8641 −2.3523
−1.2110 −2.1151
−0.8494 −1.8050
−0.6925 −1.4424

It must be noted that the mechanisms found using optimization tech-
niques are guaranteed local optimum. However, it is uncertain if these are
actually the global minimum in search space. Simulated Annealing only
guarantees global minimum asymptotically over a long time. As mentioned
earlier, faster solutions have been preferred in our implementation.
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Figure 2.11: Test case 2: Synthesized mechanism for non-uniformly sampled
input using uniform parametrization

Figure 2.12: Test case 2: Synthesized mechanism for non-uniformly sampled
input using optimum parametrization
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Table 2.13: Test case 2: Task path and Coupler path Descriptor Data for
Fig. 2.11

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−3 0.02795 − 0.03086i 0.0416 −0.04315 − 0.01576i 0.0459

p=−2 0.03278 − 0.126i 0.1302 −0.007658 − 0.07339i 0.0738

p=−1 0.174 − 0.1808i 0.2509 0.1788 − 0.1024i 0.2060

p=0 −2.789 − 0.8947i 2.9292 −2.789 − 0.8947i 2.9292

p=1 1.454 − 0.01518i 1.4542 1.454 − 0.01518i 1.4542

p=2 0.2398 + 0.1194i 0.2679 0.2584 + 0.07961i 0.2704

p=3 0.0018 + 0.09918i 0.0992 −0.02167 + 0.1402i 0.1419

Table 2.14: Test case 2: Synthesized mechanism parameters Data for
Fig. 2.11

l1 l2 l3 l4 x0 y0 θ1 r α φ0

1.730 1.693 1.971 2.108 −3.328 −0.854 −0.979 0.897 0.067 1.290

Table 2.15: Test case 2: Task path and Coupler path Descriptor Data for
Fig. 2.12

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−3 0.01283 − 0.01092i 0.0169 −0.009025 − 0.01366i 0.0164

p=−2 0.053 − 0.03109i 0.0615 0.04745 − 0.02206i 0.0523

p=−1 0.1239 − 0.1935i 0.2297 0.1211 − 0.1896i 0.2250

p=0 −2.464 − 1.06i 2.6826 −2.464 − 1.06i 2.6826

p=1 1.478 + 0.2214i 1.4941 1.478 + 0.2214i 1.4941

p=2 −0.04315 − 0.004513i 0.0434 −0.06751 − 0.01835i 0.0700

p=3 −1.967e-4 + 0.06792i 0.0679 0.006821 + 0.01176i 0.0136

Table 2.16: Test case 2: Synthesized mechanism parameters Data for
Fig. 2.12

l1 l2 l3 l4 x0 y0 θ1 r α φ0

4.325 1.369 1.747 3.952 −2.464 −0.615 −0.634 0.552 −1.980 0.658
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2.2.5.2 Synthesizing Unknown Mechanisms

Synthesizing mechanism using path points which are known to fall on an
existing mechanism is a relatively easier problem. Our algorithm should be
able to deal well with cases where it is unknown if any four- bar mechanism
exists which can fulfill path constraints. Thus, this section deals with path
synthesis for random data-points which may not satisfy any mechanism.

The number of descriptors being used to describe the Task path controls if
Interpolation or approximation of path points will take place. When number
of descriptors being considered is equal to the path point input, Task Path is
an interpolation curve. When number of descriptors is less than path point
input, Task Path is an approximation curve. The optimum parameterization
directly affects the Task path and hence has different effect when Task curve
is an interpolation curve than when it is an approximation curve.

Test case 3

First, the case when Task curve interpolates user-inputted path points is con-
sidered. The sampled data used for testing is given in Table 2.17. Fig. 2.13
represents the uniform parameterization case while Fig. 2.14 represents the
optimum parameterization case. Table 2.18 and Table 2.19 contains the
Fourier descriptor and Synthesized mechanism data for uniform parametriza-
tion while Table 2.20 and Table 2.20 shows same for optimum parameteriza-
tion. Better results are observed using Optimum parameterization.

Table 2.17: Test case 3: Input point data to analyze effect of Path Synthesis
under different parameterizations

X Y

−6.0652 1.5414
−4.2982 2.2180
−2.9825 2.5188
−0.5890 2.4436
4.4361 −1.7794

Test case 4

Another case when Task curve interpolates user-inputted path points is con-
sidered. The sampled data used for this case is given in Table 2.22. Fig. 2.15
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Figure 2.13: Test case 3: Synthesized mechanism using uniform parametriza-
tion

Figure 2.14: Test case 3: Synthesized mechanism using optimum
parametrization
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Table 2.18: Test case 3: Task path and Coupler path Descriptor Data for
Fig. 2.13

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−2 −1.953 − 0.08941i 1.9552 −1.927 + 0.001045i 1.9267

p=−1 −1.355 − 2.423i 2.7763 −1.578 − 2.342i 2.8244

p=0 −1.91 + 1.404i 2.3700 -1.91 + 1.404i 2.3700

p=1 0.1551 + 1.477i 1.4847 0.1551 + 1.477i 1.4847

p=2 −1.002 + 1.174i 1.5433 -1.197 + 0.5792i 1.3294

Table 2.19: Test case 3: Synthesized mechanism parameters Data for
Fig. 2.13

l1 l2 l3 l4 x0 y0 θ1 r α φ0

4.038 4.498 7.132 8.315 −6.277 4.621 −0.226 7.419 0.965 0.969

Table 2.20: Test case 3: Task path and Coupler path Descriptor Data for
Fig. 2.14

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−2 −0.7192 + 0.9789i 1.2147 −0.6846 + 0.7712i 1.0312

p=−1 −2.759 − 1.96i 3.3841 −2.783 − 1.936i 3.3898

p=0 −1.033 + 1.025i 1.4555 −1.033 + 1.025i 1.4555

p=1 −0.6791 + 1.752i 1.8792 −0.6791 + 1.752i 1.8792

p=2 −0.8745 − 0.2552i 0.9110 −1.024 − 0.294i 1.0651

Table 2.21: Test case 3: Synthesized mechanism parameters Data for
Fig. 2.14

l1 l2 l3 l4 x0 y0 θ1 r α φ0

13.427 4.249 6.608 15.355 −5.931 7.017 0.509 9.316 0.240 0.286
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represents the uniform parameterization case while Fig. 2.16 represents the
optimum parameterization case. Table 2.23 and Table 2.24 contains the
Fourier descriptor and Synthesized mechanism data for uniform parametriza-
tion while Table 2.25 and Table 2.25 shows same for optimum parameteriza-
tion. Better results just like the previous case are observed using Optimum
parameterization. This can be attributed to the smoother Task path being
generated.

Table 2.22: Test case 4: Input point data to analyze effect of Path Synthesis
under different parameterizations

X Y

−5.9649 2.0677
−5.9148 2.5815
−2.6817 2.4436
−1.0276 1.2907
0.4511 0.1378
0.6140 −0.7143
−0.1504 −1.7419
−1.0025 −2.0677
−3.1830 −2.2180

Table 2.23: Test case 4: Task path and Coupler path Descriptor Data for
Fig. 2.15

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−4 −0.1434 + 0.2558i 0.2933 −0.1243 + 0.09496i 0.1564

p=−3 −0.3389 + 0.01849i 0.3394 −0.3102 + 0.1065i 0.3280

p=−2 −0.6863 − 0.1632i 0.7055 −0.8236 − 0.05511i 0.8255

p=−1 −2.687 − 0.2777i 2.7011 −2.63 − 0.3277i 2.6502

p=0 −2.04 + 0.2058i 2.0500 −2.04 + 0.2058i 2.0500

p=1 −0.3293 + 0.8554i 0.9166 −0.3293 + 0.8554i 0.9166

p=2 0.09096 + 0.4632i 0.4721 0.2565 + 0.5486i 0.6056

p=3 3.19e-4 + 0.3465i 0.3465 −0.01048 + 0.1059i 0.1064

p=4 0.1681 + 0.3633i 0.4003 −0.02299 + 0.09183i 0.0947
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Figure 2.15: Test case 4: Synthesized mechanism using uniform parametriza-
tion

Figure 2.16: Test case 4: Synthesized mechanism using optimum
parametrization
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Table 2.24: Test case 4: Synthesized mechanism parameters Data for
Fig. 2.15

l1 l2 l3 l4 x0 y0 θ1 r α φ0

9.601 3.649 5.341 10.261 4.016 −2.022 1.676 7.598 −0.280 0.657

Table 2.25: Test case 4: Task path and Coupler path Descriptor Data for
Fig. 2.16

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−4 0.0706 + 0.02878i 0.0762 0.001212 + 0.03129i 0.0313

p=−3 −0.09564 + 0.06566i 0.1160 −0.05046 + 0.1282i 0.1378

p=−2 −0.3552 + 0.1578i 0.3887 −0.4064 + 0.2881i 0.4982

p=−1 −2.693 + 0.4287i 2.7273 −2.659 + 0.4019i 2.6891

p=0 −2.334 + 0.2155i 2.3435 −2.334 + 0.2155i 2.3435

p=1 −0.4451 + 0.6047i 0.7509 −0.4451 + 0.6047i 0.7509

p=2 −0.02 + 0.2612i 0.2619 0.03202 + 0.3735i 0.3749

p=3 −0.0888 + 0.1588i 0.1819 −0.02017 + 0.02214i 0.0299

p=4 −0.003836 + 0.1466i 0.1466 −0.01474 + 0.005768i 0.0158

Table 2.26: Test case 4: Synthesized mechanism parameters Data for
Fig. 2.16

l1 l2 l3 l4 x0 y0 θ1 r α φ0

6.324 2.001 5.582 4.732 4.866 12.652 −1.574 14.897 0.251 0.616
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Test case 5

Let us now focus our attention on the second scenario where Task curve
approximates the given user-defined Path points. The sampled data used
for this case is given in Table 2.27. Just five Fourier descriptors have been
used to solve this Path Synthesis problem. Fig. 2.17 represents the uniform
parameterization case while Fig. 2.18 represents the optimum parameteri-
zation case. Table 2.28 and Table 2.29 contains the Fourier descriptor and
Synthesized mechanism data for uniform parametrization while Table 2.30
and Table 2.30 shows same for optimum parameterization. Very similar syn-
thesized mechanisms results are observed for both parameterizations. This
can be attributed to relatively small change in the Task curve geometry by
using a different parameterization.

Table 2.27: Test case 5: Input point data to analyze effect of Path Synthesis
under different parameterizations

X Y

−3.0075 1.3910
−1.8045 2.3935
−1.4035 1.9799
−0.1504 1.5915
0.8521 0.8897
1.0777 −0.6642
0.8521 −1.4411
−0.0501 −1.6165

Table 2.28: Test case 5: Task path and Coupler path Descriptor Data for
Fig. 2.17

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−2 −3.143 + 1.155i 3.3483 −3.165 + 1.169i 3.3743

p=−1 6.428 − 0.1827i 6.4308 6.414 − 0.1735i 6.4166

p=0 −10.39 + 5.06i 11.5580 −10.39 + 5.06i 11.5580

p=1 3.915 − 7.604i 8.5528 3.915 − 7.604i 8.5528

p=2 0.2588 + 3.031i 3.0418 0.2724 + 3.031i 3.0429
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Figure 2.17: Test case 5: Synthesized mechanism using uniform parametriza-
tion

Figure 2.18: Test case 5: Synthesized mechanism using optimum
parametrization
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Table 2.29: Test case 5: Synthesized mechanism parameters Data for
Fig. 2.17

l1 l2 l3 l4 x0 y0 θ1 r α φ0

7.128 3.646 3.434 2.256 −0.202 −8.516 2.178 7.262 −0.310 5.498

Table 2.30: Test case 5: Task path and Coupler path Descriptor Data for
Fig. 2.18

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−2 −3.076 + 1.468i 3.4085 −3.076 + 1.468i 3.4085

p=−1 4.407 − 1.129i 4.5496 4.407 − 1.129i 4.5496

p=0 −6.333 + 3.794i 7.3830 −6.333 + 3.794i 7.3830

p=1 2.025 − 4.318i 4.7693 2.025 − 4.318i 4.7693

p=2 −0.01952 + 1.614i 1.6142 −0.01956 + 1.614i 1.6142

Table 2.31: Test case 5: Synthesized mechanism parameters Data for
Fig. 2.18

l1 l2 l3 l4 x0 y0 θ1 r α φ0

9.115 4.059 5.117 3.013 −1.073 −12.459 1.956 10.594 −0.040 5.555
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Test case 6

Another case of the scenario where Task curve approximates the given user-
defined Path points is taken. The sampled data used for this case is given in
Table 2.32. Just five Fourier descriptors have been used to solve this Path
Synthesis problem. Fig. 2.19 represents the uniform parameterization case
while Fig. 2.20 represents the optimum parameterization case. Table 2.33
and Table 2.34 contains the Fourier descriptor and Synthesized mechanism
data for uniform parametrization while Table 2.35 and Table 2.35 shows same
for optimum parameterization. Again, the synthesized mechanism are not
drastically different like the previous case.

Table 2.32: Test case 6: Input point data to analyze effect of Path Synthesis
under different parameterizations

X Y

−4.2105 0.3258
−3.4586 1.5288
−2.6065 1.6792
−1.3033 1.8672
0.1003 1.2657
1.2030 0.6266
1.8672 −1.2531
1.6040 −1.7920
0.8521 −2.3308
0.0752 −2.2431
−1.2782 −1.8296
−1.5288 −1.2782
−1.8546 −0.6767
−2.3058 −0.3509
−3.1830 −0.3759

2.2.5.3 Observations

After analyzing all the example data, a couple of observations can be made.
When Task curve interpolates the path points, optimal parameterization is
very effective. This happens because interpolation curves extremely sensi-
tive to different parameterizations. However, when Task curve approximates
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Figure 2.19: Test case 6: Synthesized mechanism using uniform parametriza-
tion

Figure 2.20: Test case 6: Synthesized mechanism using optimum
parametrization
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Table 2.33: Test case 6: Task path and Coupler path Descriptor Data for
Fig. 2.19

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−2 −0.4317 − 0.596i 0.7359 −0.3561 − 0.5088i 0.6210

p=−1 −1.586 + 1.403i 2.1173 −1.585 + 1.413i 2.1233

p=0 −1.332 − 0.3022i 1.3659 −1.332 − 0.3022i 1.3659

p=1 −0.707 + 0.08172i 0.7117 −0.707 + 0.08172i 0.7117

p=2 0.01146 − 0.0414i 0.0430 0.2299 + 0.0727i 0.2412

Table 2.34: Test case 6: Synthesized mechanism parameters Data for
Fig. 2.19

l1 l2 l3 l4 x0 y0 θ1 r α φ0

4.552 1.735 14.385 14.385 −8.772 −8.688 0.761 11.677 1.491 4.563

Table 2.35: Test case 6: Task path and Coupler path Descriptor Data for
Fig. 2.20

Task path Coupler path

Descriptor Complex Value Magnitude Complex Value Magnitude

p=−2 −0.5691 − 0.6445i 0.8598 −0.5687 − 0.6448i 0.8597

p=−1 −1.162 + 1.772i 2.1195 −1.162 + 1.773i 2.1195

p=0 −1.906 − 0.04384i 1.9062 −1.906 − 0.04384i 1.9062

p=1 −0.7783 − 0.5533i 0.9549 −0.7783 − 0.5533i 0.9549

p=2 0.2387 − 0.1034i 0.2601 0.2392 − 0.1031i 0.2605

Table 2.36: Test case 6: Synthesized mechanism parameters Data for
Fig. 2.20

l1 l2 l3 l4 x0 y0 θ1 r α φ0

8.044 3.120 24.414 25.420 −12.920 −4.554 0.354 12.282 1.578 4.261
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the path points, optimal parameterization is less effective. This can be at-
tributed to the fact that approximation curve are less sensitive to different
parameterization. Thus, the synthesis problems where optimal parameteri-
zation is most advantageous are the ones with number of points being equal
to Fourier descriptors being considered.

2.3 Frenet frame based Path Approximation

Motion synthesis problem can be described as calculating a mechanism whose
coupler passes through a set of user-defined poses. A pose contains path and
orientation and is mathematically defined as (x, y, θ).

Another way to solve the path synthesis problem is to reformulate it as
a motion synthesis problem and solve that. This can be accomplished by
attaching an adequate orientation to each of the inputted path points and
consequently turning them into poses. In doing this, additional constraints
are being applied to the existing problem. Motion synthesis turns out to be
a mathematically less complex problem as each dyad can be calculated sep-
arately effectively halving the number of unknowns in the equations. Thus,
if the applied extra orientation constraints make physical sense, the path
synthesis problem can be solved with greater speed and ease. Another great
advantage of the motion synthesis algorithm is that it gives multiple solutions
instead of single solution due to which the user has enhanced flexibility.

Thus, Path synthesis algorithm solve nonlinear system of equations in real
space while Motion synthesis algorithm solve a linear system of equations in
quaternion space. Consequently, the motivation to convert path synthesis
problem into a motion synthesis problem is enhancement in computation
speed.

2.3.1 Calculating orientations

The path synthesis problem dealt till now has been directly related to the
general shape of coupler curve rather than a small number of precision
points. Consequently, an interpolation curve passing through the inputted
path points, describing the target shape, is already an integral part of the
algorithm. In the previous section, this target curve has been an approxima-
tion using a limited number of Fourier basis functions. However, any other
curve like a Bezier or b-spline curve is an equally valid possible target path.
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Frenet-Serret frame [29] is a moving reference frame of orthonormal vec-
tors which are used to describe a time-parametrized curve locally at each
point on it. The orthonormal vectors are denoted by T,N,B representing
tangent, normal and binormal vectors. The osculating plane is defined as
the plane spanned by the vectors T and N . If a three-dimensional Euclidean
space curve r(t) is parametrized by time t belonging to the interval [a, b],
then T,N,B are defined as

T (t) =
r′(t)

‖r′(t)‖
(2.52)

N(t) =
T ′(t)

‖T ′(t)‖
(2.53)

B(t) =
T (t)×N(t)

‖T (t)×N(t)‖
(2.54)

In the path synthesis problem of planer mechanisms being discussed, the
task curve is strictly two-dimensional. As a result, The binormal vector
always points out of the osculating plane and its speed of rotation (torsion)
is zero. The orientation of the local frame can be determined by finding the
angle at which the tangent exists. This step extracts the orientation data at
each path point and combines with it to become pose data. Once path data
has been transformed to pose data using the target curve, path synthesis
transforms to motion synthesis.

2.3.1.1 Fourier Curve

For an approximation curve the least square fitted to path points using lim-
ited Fourier basis functions described by

T =
n∑

k=−n

Tke
ikφ, (2.55)

the tangent vector is

dT

dφ
= T ′ =

n∑
k=−n

ikTke
ikφ =

n∑
k=−n

T ′ke
ikφ (2.56)

and the orientation is
θt = arg(T ′t) (2.57)

Using these relationships, orientation data for each path point can be calcu-
lated and combined to give pose data.
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2.3.1.2 B-spline Curve

A B-spline can be used to represent the target curve for path synthesis prob-
lem. To calculate it, a B-spline global interpolation algorithm is used which
first finds parameters for input path points using the centripetal method.
Once a set of parameters is obtained, knot vector is computed using the
averaging method. After that, the set of control points can be calculated
by solving a system of equation using input data points and B-spline basis
function values at calculated parameters. As a result, a target b-spline which
interpolates input path points is calculated. It is described as

C(u) =
n∑
i=0

Ni,p(u)Pi (2.58)

where Ni,p are B-spline basis functions of degree p and Pi represents control
points. It is characterized by a knot vector U = {u0, u1, . . . , um} and is of
degree p.

The derivative of a B-spline curve is given by the equation

C ′(u) =
n−1∑
i=0

Ni+1,p−1(u)Qi (2.59)

where Qi are defined as

Qi =
p

ui+p+1 − ui+1

(Pi+1 − Pi) (2.60)

Therefore, the derivative of a B-spline curve is another B-spline curve of
degree p − 1 on the original knot vector with a new set of n control points
Q0, Q1, . . . , Qn−1. Once the tangent vector is known, the orientation can be
calculated as tan−1(y/x)

2.3.2 Motion Synthesis Algorithm Review

Now that the path synthesis problem has been reformulated as motion syn-
thesis problem, solution mechanisms can be achieved by calculating the
dyads. Algebraic fitting based motion synthesis algorithm [30–33] has been
used in our implementation. This goal of this approach is to map the poses
into image space and fit geometric constraint manifolds described using image
space coordinates to calculate the least square solution dyads.
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First, using kinematic mapping, each of the user-defined pose {d1, d2, φ}
is mapped to quaternion space defined by a four-dimensional vector Z =
{Z1, Z2, Z3, Z4} is Image Space. The relations mapping real space to image
space are

Z1 =
1

2
(d1 cos

φ

2
+ d2 sin

φ

2
) (2.61)

Z2 =
1

2
(−d1 sin

φ

2
+ d2 cos

φ

2
) (2.62)

Z3 = sin
φ

2
(2.63)

Z4 = cos
φ

2
(2.64)

The geometric motion constraint which every dyad needs to satisfy is
given by the G-constraint manifold described as

q1(Z2
1 + Z2

2) + q2(Z1Z3 − Z2Z4) + q3(Z2Z3 + Z1Z4)

+q4(Z1Z3 + Z2Z4) + q5(Z2Z3 − Z1Z4) + q6Z3Z4

+q7(Z2
3 − Z2

4) + q8(Z2
3 + Z2

4) = 0, (2.65)

where qi(i = 1, 2, ·, 8) represents a dyad in Image space. Thus, the coefficients
for G-manifold defined for each pose can be calculated using

Ai1 = Z2
i1 + Z2

i2 (2.66)

Ai2 = Zi1Zi3 − Zi2Zi4 (2.67)

Ai3 = Zi2Zi3 + Zi1Zi4 (2.68)

Ai4 = Zi1Zi3 + Zi2Zi4 (2.69)

Ai5 = Zi2Zi3 − Zi1Zi4 (2.70)

Ai6 = Zi3Zi4 (2.71)

Ai7 = Z2
i3 − Z2

i4 (2.72)

Ai8 = Z2
i3 + Z2

i4 (2.73)

where i is the pose index ranging from i = (1, 2, ·, n). Consolidating all the
G-manifold equations results in the following over-constrained homogenous
linear system on equation

Aq = 0 (2.74)
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where

A =


A11 A12 A13 A14 · · · · · · · · · A18

A21 A22 A23 A24 · · · · · · · · · A28
...

...
...

...
...

...
...

...
An1 An2 An3 An4 · · · · · · · · · An8,

 (2.75)

q =
[
q1 q2 · · · q8

]T
(2.76)

The least square solution to this homogeneous system of equation can eas-
ily be found out using the full singular value decomposition of G-manifold
coefficient matrix A. The last column of the right singular vector, which cor-
responds to the smallest singular value, is the least square solution. However,
to generate a mechanism, at least two dyads are required. Thus, the right
singular vector corresponding to the second-most and third-most smallest
singular value is also taken as a possible solution. Space spanned by these
three orthonormal vectors reflect a family of possible dyads which can be
used for given poses.

For dyads to make physical sense, following extra C-manifold constraints
are required to be satisfied

q1q6 + q2q5 − q3q4 = 0 (2.77)

2q1q7 − q2q4 − q3q5 = 0 (2.78)

An analytic solution to the minimization problem to satisfy the constraints
gives a quartic equation. As a result, upto 4 unique dyads are generated
which satisfy the initial motion synthesis problem. Combining any of the
two dyads results in a solution four-bar mechanism.

As a result, the path synthesis problem is solved and prospective solu-
tions are generated. However, solutions received are characterized by branch
defects i.e. reaching all the path points in a given assembly mode might be
impossible. This reduces the application of solutions in practical problems
to some extent.

2.3.3 Results

Fig 2.21 shows an example of Frenet frame based path synthesis using Fourier
based curve. The user-defined path input for this example is given in Ta-
ble 2.37. Our algorithm finds a defect free mechanism for this path problem.
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Figure 2.21: Motion synthesis using Frenet frame for Fourier based curve

Table 2.37: Input point data to analyze Frenet frame based Path Synthesis
using Fourier Curves

X Y

−4.1604 −0.4887
−3.6090 0.1754
−2.8446 0.7393
−1.3409 0.7895
0.1504 0.4637
1.6040 −0.3133
3.2832 −0.1629
4.2105 0.7393
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Fig 2.22 shows an example of Frenet frame based path synthesis using
B-spline curve. The user-defined path input for this example is given in Ta-
ble 2.38. Our algorithm is able to find a good prospective solution. However,
the synthesized mechanism does suffers from branch defect.

Figure 2.22: Motion synthesis using Frenet frame for Bspline curve

Table 2.38: Input point data to analyze Frenet frame based Path Synthesis
using B-spline Curves

X Y

−3.3960 1.1028
−2.7945 1.6541
−1.7419 1.8045
−0.8396 1.4536
−0.0877 1.0777
0.4261 0.6516
1.3283 0.0251
1.8797 −0.8271

It must be noted that giving extremely random input points rarely gen-
erates a mechanism which can be attributed to two main reasons. Firstly,
the might not exist any mechanism which passes through those input points.
Secondly, as the orientation data is not representative in any ways of four bar
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motion (represents physical motion), the algorithm might fail to generate an
existing mechanism with same path points but different orientations.

2.4 Better shape estimation for limited data

In problem instances where the input path point data is less, the least square
approximation curve can wiggle unnecessarily. As a result, target path shape
can be quite different than what the user’s intrusion might be. This wriggle
can always exist in cases where the input points are equal to the number of
Fourier basis functions being used to describe the approximation curve. The
oscillations in interpolation curve have been studied as Runge’s phenomenon
for polynomial functions [34]. Thus, the understanding is that more sample
points can help better approximate the target shape only if the order of
the approximating curve remains same. If the order is also increased, the
oscillations exacerbate. Consequently, the only way to minimize the wriggle
is to increase the input path data before the approximation is done in a
manner which is reflective of user intuition.

Interpolating subdivision algorithms [35,36] are handy recursive methods
to generate more intermediate points for input. Depending on the selection
of averaging mask, a variety of curve geometries can be recursively gener-
ated. The curve selected is the cubic B-spline curve and Dyn-Levin-Gregory
subdivision algorithm is used to achieve this. The cubic B-splines reflect the
mathematical properties of a physical spline made of some flexible material,
anchored at a set of points. As a result, the choice of cubic B-splines en-
codes the curve shape in accordance with user intuition and his real-world
experiences. Thus, extra data is generated according to the best physically
relevant shape which the user might have in his mind.

The process of subdivision is implemented in two steps. First, new inter-
mediate midpoints are generated for the given control polygon. Then, the
generated points are moved to their final position using an averaging mask.
The averaging mask used for Dyn-Levin-Gregory subdivision [35] is

r =
1

16
[−2, 5, 10, 5,−2] (2.79)

As a result, the input data of n data-points is converted to 2n−1 data-points
after each instance of recursion.

An added advantage of using the subdivision algorithm is that target
path curves defined by B-splines can be easily approximated by running
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the recursion enough number of times. As a result, just a small number of
control points are required to calculate an approximate trigonometric curve
descriptors representing the described cubic B-spline curve.

In Fig. 2.23, 2.24 an example of path synthesis problem is displayed which
benefits from interpolating subdivision algorithm. In the first figure, it can
be observed that synthesized mechanism is unable to pass through the given
data points. However, in the second figure, using one level of interpolation
points help generate a better mechanism. This can be attributed to the
minimization of inherent wiggle in the target curve on using path points
greater than the number of harmonics being used to describe it. Fig. 2.25,
2.26 represent another such problem. Thus, from the examples, it is apparent
that the interpolating strategy is helpful in cases where target curves wiggle
unnecessarily.

Figure 2.23: Example 1: Path synthesis without interpolation data points
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Figure 2.24: Example 1: Path synthesis with interpolation data points

Figure 2.25: Example 2: Path synthesis without interpolation data points

Figure 2.26: Example 2: Path synthesis with interpolation data points
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Chapter 3

Mixed Synthesis

3.1 Literature review

In Chapter 2, the path problem has been transformed into a motion synthesis
problem by generating orientation data. The orientations were generated in
accordance with the velocity vector i.e. the coupler always remain oriented
in the direction it is moving. This method is a heuristic and does not depend
on the actual relation between the path and orientation for a mechanism.
In this chapter, the analytic relation between the orientation data and path
data using the harmonic breakdown of the loop closure equation is explored.
This relation enables to attack a new set of problems which is a hybrid of
path and motion synthesis, aptly called Mixed Synthesis.

It must be noted that Mixed Synthesis in our case does NOT refer to the
Mixed exact- approximate path or motion synthesis where we have a set of
precision and approximate constraints. Our definition of Mixed refer to a
mixture of Path points and Poses.

Work on Mixed synthesis is pretty recent with its first study in [37] where
it is termed as Alt-Burmester problem. The continuation of this study is pre-
sented in [38] where all possible cases for precision cases have been analyzed.
However, the precision point and pose cases are restricted to just upto 9
points and 5 poses, thus ignoring a vart population of possible mixed prob-
lems. A graphical based approach has been presented in [39] to solve the
mixed problem using sketcher tool inbuilt in modern CAD software. The
Fourier approximation based approach proposed in this thesis can handle
any number of path points or poses.
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Sections 3.2, 3.3, 3.4 highlight the relationship between path and orien-
tation Fourier descriptors for a four bar motion as shown in [40]. The four
bar design variables used to specify the motion are {l1, l2, l3, l4, x0, y0, θ1, r, α}
where l1, l2, l3, l4 are the link lengths, x0, y0 are the actuating fixed pivot coor-
dinates, θ1 is the fixed link orientation and r, α are coupler point parameters.
δ is the angle at which moving frame has been attached to the coupler point.
These mechanism parameters have been visualized in Fig. 3.1.

Y

Xx0

A

y0

l2

A0

θ1

l1

B0

l4

B

l3

P

α

r

x
y

δ

λ

φ

Figure 3.1: Visualization of Motion synthesis mechanism parameters

3.2 Harmonic representation of Coupler an-

gle

The analytic equation defining the coupler angle (λ) for a four bar mechanism
is represented as

ejλ =
∞∑

k=−∞

Cke
jkφ =

∞∑
k=−∞

Cke
jktejkφ0 (3.1)

where Ck are the harmonic descriptors of coupler angle.
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3.3 Harmonic representation of Path

The analytic equation which defines the path (P ) of coupler point for a four
bar mechanism is

P = A0 + l2e
iθ1eiφ + reiαeiθ1eiλ (3.2)

Being a periodic function, it can also be represented as

P =
∞∑

k=−∞

Pke
jkωt (3.3)

where Pk are the harmonic descriptors for path and are defined as

P0 = C0rej(α+θ1) + (jy0 + x0) k = 0 (3.4)

P1 = C1e
jφ0rej(α+θ1) + l2e

jθ1ejφ0 k = 1 (3.5)

Pk = Cke
jkφ0rej(α+θ1) k 6= 0, 1 (3.6)

3.4 Harmonic representation of Orientation

The orientation (ζ) at the coupler point for a four bar mechanism can be
defined as

ζ = δ + λ+ θ1 = arg(ej(δ+λ+θ1)) (3.7)

As λ varies periodically and other variables remain constant, the orientation
can be decomposed harmonically as

ej(δ+λ+θ1) =
∞∑

k=−∞

C∗ke
jkωt (3.8)

where C∗k are the harmonic descriptors for orientation and defined as

C∗k = Cke
j(δ+θ1)ekφ0 (3.9)

3.5 Relationship between path and orienta-

tion descriptors

Finding the relationship between the harmonic descriptors of path(Pk) and
orientation(C∗k) results in the following relationship

C∗0 = (P0 + z2)z1 (3.10)
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C∗1 = (P1 + z3)z1 (3.11)

C∗k = Pkz1 (3.12)

where

z1 =
ej(δ−α)

r
(3.13)

z2 = −(x0 + jy0) (3.14)

z3 = −(l2e
jθ1ejφ0) (3.15)

Using the above relationship, the orientation at coupler point can be
defined exclusively using path harmonic descriptors as follows

ejζ(t) = z1

(
z2 + z3e

jωt +
∞∑

k=−∞

Pke
jkωt

)
(3.16)

Thus, for n path points, the system of equation describing orientation at
each path point turns out to be

ejζ1

ejζ2
...

ejζn

 =


1 ejωt1

∑−p
k=p Pke

jkωt1

1 ejωt2
∑−p

k=p Pke
jkωt2

...
...

...

1 ejωtn
∑−p

k=p Pke
jkωtn


 z1z2

z1z3

z1

 (3.17)

Thus, the orientations at different points of a four bar coupler path is
dependent on Path descriptors and three complex variables {z1, z2, z3} which
are dependent on design parameters.

3.6 Solving for unknown orientations

For a given general mixed synthesis problem, with n poses and m path points,
a smooth task path with low harmonic Fourier descriptor can easily be cal-
culated using optimum parametrization discussed before. As it has been
observed [40], coupler path for a four-bar mechanism has significant mag-
nitude only for the lower harmonics. Thus, the fitted task path is a good
prospective four bar coupler curve. By using task path descriptors as coupler
path descriptors, an “Exact solution to an approximate question” is being
calculated.
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There are multiple ways the relation given in Eqn. 3.17 can be used to
convert mixed synthesis into motion synthesis problem. The aim is to find the
values of {z1, z2, z3} so that all the unknown orientations can be found out.
Additional external constraints which will define unique values for unknown
orientations are required.

One way is using three orientations to constrain z1, z2, z3. Physically, it
makes sense that the user might know orientations at the initial and final
position and an additional location in between the motion.

Location of actuating fixed pivot and two orientations is another way of
constraining the unknown orientations. The user can specify the orientations
at first and the last point and choose the crank fixed pivot according to his
convenience.

If the user has coupler link constraints, {r, α, δ} can be fixed to find the
value of z1. Subsequently, only two more orientations are required to fully
define the system of equation.

If there is a physical application where constraining variables like l2, θ1, φ0

is a part of the problem statement, the system of equation can be constrained
in some other way according to the problem. l2 can be fixed to defined to
scale the mechanism according to the task. θ1 defines the fixed link angle
and can be selected to geometrically constrain fixed pivots at specified angle
from the horizontal.

However, it is improbable that the user has a limited choice of most or
all mechanism parameters because that would imply a four bar mechanism
has already been mostly selected. Over-specifying a mechanism even before
the synthesis problem drastically decreases the space of possible paths that
can be synthesized.

To summarize, the three possible mixed constraints are

1. Specify actuating fixed pivot i.e. {x0, y0}

2. Specify coupler parameters i.e. {r, α, δ}

3. Specify scale, orientation and initial angle i.e. {l2, θ1, φ0}

When the number of orientations known is more than 3, a least square
solution for z1, z2, z3 can easily be calculated by finding complex Singular
Value Decomposition. Since complex SVD is not as widespread in use as
its real counterpart, libraries for complex SVD computation on a web-based
platform are lacking. Thus, complex system of equation in Eqn. 3.17 is
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reduced to an equivalent real system of equation in accordance with [41].
The K1 formulation has been used in the implementation. According to the
formulation, a complex system of equation

(A+ iB)(x+ iy) = b+ ic (3.18)

can be written as a real system of equation[
A −B
B A

] [
x
y

]
=

[
b
c

]
(3.19)

Finding least square solution to this equivalent real system of equations gives
the solution to original complex problem and values of z1, z2, z3 can be cal-
culated in over-constrained cases.

Once the values of z1, z2, z3 are known, orientations at all the unknown
path points can be found out and the motion synthesis algorithm can be used
to calculate dyads. It must be noted that with constraints on orientation
angle at some path points, the problem is essentially a hybrid of path and
motion synthesis. Thus, our problem definition now incorporates both poses
and path points as input and is called as mixed synthesis.

3.7 Generalized framework for Motion, Path,

and Mixed Synthesis

The power of methodology outlined above is that it can handle both Motion
and Mixed synthesis problems within it. A case by case discussion covering
various permutations of (0, 1, · · · ,m) path points and (0, 1, · · · , n) poses is
displayed in Table 3.1

In the table, MOC = Motion Synthesis constraint [30], MIC = Mixed
Synthesis Constraint, FD = Fully Defined. The * refers to conditions where
a Fourier task curve with just four points needs to be fitted and would have
unsymmetrical descriptors.

Motion Synthesis constraints refer to the geometric constraints outlined
in [30] which are used to specify the position of fixed or moving pivots using
line or point constraints. Mixed Synthesis Constraint have been described
in detail in the previous section and involves constraints on actuating pivot,
coupler dimensions, and other mechanism parameters. Fully Defined entails
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Table 3.1: Case by case Mixed Synthesis using generalized framework

Path Points
0 1 2 3 4 m

Poses

0 X X X X FD∗ FD
1 X X X 2 MIC∗ 2 MIC 2 MIC
2 X X 1 MIC∗ 1 MIC 1 MIC 1 MIC
3 2 MOC 1 MOC∗ FD FD FD FD
4 1 MOC FD FD FD FD FD
5 FD FD FD FD FD FD
n FD FD FD FD FD FD

that no extra constraints are needed to exactly or least square solve the mixed
synthesis Eqn. 3.17.

Except for the cases involving zero poses, Eqn. 3.17 can be used to solve
the generalized problem. When the synthesis problem has zero pose, the
usual path synthesis algorithm is used. It must be noted that except for the
case where there are no poses, the synthesis is both Type and Dimensional
in nature. However, cases with only path points are branch defect free.

The algorithm described to solve the Generalized Path-Pose Mixed prob-
lem can be summarized as follows

Input: Path points and Poses
if n(Path points+poses)≥ 4 then

Calculate Task curve fourier descriptor using modified
reparemetrization

end
if n(Pose)=0 then

Fourier based Path synthesis
end
else

Combined Motion+Path synthesis
end
Output: Synthesised mechanism

Algorithm 5: Pseudo-code for Unified Motion, Path and Mixed Syn-
thesis

The only currently known facts characterizing descriptors of Four-bar
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motion and path are

• Magnitude of higher harmonics decrease very fast

• Ratio between the Path and orientation Fourier descriptors is constant

Both of these rules are being exploited in the proposed algorithm. Thus, this
attempt can be claimed to be the best that can be achieved with the existing
state of knowledge.

3.8 Results

Fig. 3.2, 3.3 shows a mixed synthesis problem which has 3 poses and 10
path points. Coincidentally, the mechanism synthesized does not suffer from
branch defect. The point and pose data, which define this mixed problem,
are displayed in Table 3.2.

Figure 3.2: Example 1: Mixed synthesis for Three poses and ten Path points

Fig. 3.4, 3.5 shows another example of mixed synthesis problem having
3 poses and 4 path points. The synthesized mechanism for this problem
suffers from a branch defect. The point and pose data, which define this
mixed problem, are displayed in Table 3.3.

One of the major advantages of mixed synthesis is the additional flexibility
it imparts to users. An over constrained motion problem can be solved
in a least square manner using existing algorithms. However, the solution
provided are usually so bad, they don’t approximate the motion at all. An
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Figure 3.3: Example 1: Mixed synthesis- zoomed out

Table 3.2: Example 1: Mixed Synthesis problem Input constraint data

Constraint X Y ζ

Pose 1 −9.853 1.139 19.23
Point 2 −7.697 2.016
Point 3 −5.881 2.063
Point 4 −2.802 1.678
Point 5 −1.539 0.692
Point 6 −0.369 −0.0153
Pose 7 0.754 −0.400 352.37
Point 8 2.555 −0.769
Point 9 3.664 −0.723
Point 10 4.680 −0.569
Point 11 5.850 −0.107
Point 12 6.789 0.569
Pose 13 7.482 1.3086 30.37
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Figure 3.4: Example 2: Mixed synthesis for Three poses and four Path points

Figure 3.5: Example 2: Mixed synthesis- zoomed out

Table 3.3: Example 2: Mixed Synthesis problem Input constraint data

Constraint X Y ζ

Pose 1 −7.819 −0.338 35.21
Point 2 −5.438 0.689
Point 3 −3.684 0.689
Pose 4 −1.954 0.513 0.23
Point 5 1.228 −0.476
Point 6 1.353 −2.017
Pose 7 0.401 −3.170 201.94
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example of such a over constrained motion problem is shown in Fig. 3.6.
It can be observed how that the solution is useless. Now, with the help of
mixed analysis, relaxing the problem by neglecting most of orientation data
reduces the problem to the first example discussed in Fig. 3.2. This mixed
problem has a good approximate solution. The difference in the usefulness
of mechanism using different approaches is huge. Thus, if a designer has
flexibility over orientations, he can now use the Mixed synthesis framework
to find good possible mechanisms to his problems.

Figure 3.6: Example of over-constrained Motion Synthesis problem for thir-
teen Poses
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Chapter 4

Coupled Multi-Degrees of
Freedom Mechanisms

The focus till now has been to synthesize closed-loop mechanisms. Synthe-
sizing another class of mechanisms to solve the path problem will now briefly
be explored.

4.1 Single degree-of-freedom coupled serial chain

mechanisms

A number of mechanisms have been used for traversing a specified path.
One of the prominent ones, as discussed before, is the four-bar linkage. It
can generate a rich family of paths using a single actuator. However, it can
prove to be unsuitable in a cluttered environment caused by interference of
the links with each other and with the environment. In such environments,
serial chain manipulators are the preferred mechanism type but their require-
ment of multiple articulations and coordinated control makes them a more
complicated mechanism to implement practically. Tendon-driven serial-chain
manipulators permit the relocation of the actuators to the base of the ma-
nipulator, thereby reducing the inertia of the moving parts, but still require
at least as many actuators as degrees of freedom. It would be preferred if a
serial chain could be actuated using only a single input as it would simplify
the control scheme.

Single Degree-of-freedom Coupled Serial Chain (SDCSC) [42–44] mech-
anisms offer such an alternative. Such mechanisms are constructed by me-

67



Figure 4.1: Different mechanism configurations: (a) single degree-of-freedom
four-bar linkage; (b) multi-degree-of-freedom conventional, serial-chain link-
age; (c) tendon-driven serial chain linkage; and (d) single-degree-of-freedom
coupled serial chain mechanism

chanically coupling the rotations of the links of an n-link, n-d.o.f. serial chain
manipulator using cable and pulley drives or by gear-trains. Each coupling
between two successive joint rotations reduces one degree-of-freedom and re-
peated coupling reduces the overall degrees of freedom of the manipulator
to one. Thus, The resulting SDCSC mechanisms combine the simplicity of
single-degree-of-freedom control of closed-loop linkages with the modularity,
compactness and reduced interference of serial chains. SDCSC mechanisms
can be used to describe any complex path trajectory exactly if the total num-
ber of links and their size is not a restriction. Fig. 4.1 displays the different
classification of mechanisms for more clarity.

4.2 Synthesis Algorithm

A SDCSC mechanism is characterised by the total number of coupled links in
it. The trajectory of the end effector can be fully defined by defining length,
rpm and initial position of each link. Thus, to synthesize SDCSC mechanism
for a given path, all these parameters need to be computed.

Firstly, the set of path point which the user inputs are used to fit a
trigonometric curve characterized by Fourier basis. The coefficients whose
linear combination with basis functions representing this path are loosely
termed as its Fourier descriptors. Exact methodology to calculate these
descriptors has been discussed in previous sections. The number of harmonics
considered is dependent on the approximation requirement for the problem.

These calculated Fourier coefficients can easily be mapped to SDCSC.
The important observation here is that the Fourier Basis functions represent
the circular rotation at a specific rpm which represents a revolute link in the
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physical world. The summation of basis represents the superimposition of
the motions of each link hence creating a serial chain. The complex Fourier
coefficient attached to each Fourier basis thus represents the dimensions of
that revolute link. The total number of Fourier coefficients is the quantity
of links in the resultant coupled serial chain. This is in accordance with the
intuition that more the links in the mechanism, better the given path can be
approximated.

Representing the above mathematically, let a Fourier descriptor for kth

harmonic be αk = ak + ibk, then length on kth link lk = ‖αk‖ and initial
phase φk = arg(αk). Also, the (x, y) position of one end relative to another
is (Re(αk), Im(αk)). The rpm for nth harmonic is determined as n times rpm
of base harmonic. Thus, we have calculated link length, phase and rpm for
each link in synthesized SDCSC.

Figure 4.2: Synthesis of a SDCSC with eight revolute joints using uniform
parameterization

Fig. 4.2 shows an example of synthesized 4R serial coupled mechanism.
The input path point data is given in Table 4.1. The rpms of links alternate
between clockwise and anticlockwise for subsequent links. The ratios of rpm
for each link is defined. Thus, the absolute value of each rpm is dependent
on the value of rpm for the first link. The target path for this curve was
approximated using 5 Fourier basis namely base, first and second harmonics.
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Table 4.1: SDCSC Synthesis problem Input constraint data

X Y

−4.2481 0.4135
−2.1429 2.6692
1.1153 2.0301
−0.1003 −0.6642
4.1228 −0.3383
0.9148 −1.9173
−0.5890 −2.5439
−2.3810 −2.4436
−3.5589 −1.9674

4.3 Synthesis using Optimum Parametriza-

tion

Using optimal parametrization proposed previously to derive the Task curve
which has the smoothest path, it is possible to get a considerably better
mechanism. The example displayed in Fig. 4.2 has been parameterized using
the uniform scheme. Optimum parameterization is used to find a better task
path for the same input and the resultant mechanism is displayed in Fig. 4.3.
Task curve descriptors are given in Table 4.2. We notice that the mini-
mized arc length task path received from the optimum parameterization is
smoother than the one obtained from uniform parameterizations. Thus, op-
timum parameterization helps reduce the unintended waviness of task curve
successfully.
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Figure 4.3: Synthesis of a SDCSC with eight revolute joints using optimum
parameterization

Table 4.2: Task path Descriptor Data when using different Parameterizations
for SDCSC synthesis

Task path α = 0 Task path α = optimum

Descriptor Complex Value Magnitude Complex Value Magnitude

p = −4 0.2779 − 0.2105i 0.3486 0.2115 − 0.04888i 0.2171

p = −3 −0.6928 − 0.1695i 0.7132 −0.4002 − 0.4132i 0.5752

p = −2 −0.4429 + 0.1275i 0.4609 −0.5051 + 0.4028i 0.6461

p = −1 −2.607 + 0.9566i 2.7766 −2.709 + 0.6696i 2.7902

p = 0 −0.6691 − 0.5177i 0.8460 −0.5194 − 0.3082i 0.6040

p = 1 −0.3981 − 0.0814i 0.4063 −0.5667 + 0.07181i 0.5712

p = 2 0.4362 + 0.01954i 0.4367 0.4628 − 0.2367i 0.5198

p = 3 −0.3517 − 0.2449i 0.4286 −0.4979 + 0.05205i 0.5007

p = 4 0.1989 + 0.5339i 0.5698 0.2756 + 0.2242i 0.3553

71



Chapter 5

Software Review

Many existing kinematic design and synthesis softwares are being used by
professionals and researchers. However, none of them seem to have widespread
adoption. Some of the major ones have been discussed in this section. Spe-
cial emphasis has been placed on determining the extent of ability, to which
a software can simulate and synthesize mechanism.

5.1 Autodesk ForceEffect Motion

ForceEffect [45] is a mechanical design application developed by Autodesk
Inc. It was available for iOS, Android, and Desktop platforms. It had two
versions called Mechanical and Motion. Fig. 5.1 displays the dashboard of
Autodesk ForceEffect Motion. Autodesk retired the app in 2016. It used
to provide rich functionality for the simulation and analysis of multi-link
mechanisms. However, it lacked any synthesis functionality.

Thus its abilities can be summarized as

• Analysis

1. Static load analysis

2. N-bar one degree of freedom mechanisms simulation (revolute and
prismatic joints).

3. Graphing the position, velocity, and accelerations.

• Synthesis

1. No synthesis ability.
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Figure 5.1: Autodesk ForceEffect Motion Dashboard

5.2 Linkage

Linkage [46] is a Windows program developed by David Rector. Its focus
is on quick prototyping of linkage mechanisms. It has an intuitive UI and
feels like a well-built CAD software. Fig. 5.2 displays the dashboard of Link-
age. The strength of Linkage lies in its ability to simulate n-bar mechanisms.
However, due to the use of dyadic decomposition, it cannot be used to sim-
ulate mechanisms with more complex topologies like involvement of triads.
As the purpose of software is a quick analysis of mechanisms, it lacks the
ability to do path, motion or function synthesis.

Thus, its abilities can be summarized as

• Analysis

1. N-bar multi-degree of freedom mechanisms simulation (revolute
and prismatic joints). However, only dyadic decomposable mech-
anisms can be simulated.

2. Can simulate gears and chains

3. Supports multiple simultaneous simulations
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Figure 5.2: Linkage Dashboard

• Synthesis

1. No synthesis ability.

5.3 Planar Mechanism Kinematic Simulator

(PMKS)

PMKS [47] is a web application developed by Design Engineering Lab at
Oregon State University. Fig. 5.3 displays the dashboard of PMKS. Its pur-
pose is to simulate one degree of freedom planar mechanisms with multiple
rigid bodies. It can calculate quick and accurate results for the position, ve-
locity, and acceleration. It can handle non-dyadic mechanisms using a novel
approach. Synthesis of mechanism is not the focus of this application.

Thus, its abilities can be summarized as

• Analysis

1. N-bar one degree of freedom mechanisms simulation (revolute and
prismatic joints).
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Figure 5.3: Planar Mechanism Kinematic Simulator Dashboard

2. Calculates position, velocity and acceleration data.

• Synthesis

1. No synthesis ability.

5.4 Synthesis and Analysis of Mechanisms (SAM)

SAM [48] is a feature-rich PC software developed by Artas Engineering.
Fig. 5.4 displays the dashboard of SAM. Although its UI seems dated and
nonintuitive, it boasts both mechanism analysis and synthesis capabilities. It
has functionality to supports n-bar simulation for planar linkages with both
Revolute and Prismatic joints. SAM offers a set of design wizards to synthe-
size four-bar mechanisms for motion and function generation. A wizard for
path synthesis is not present.

The software does have the ability to uses Simplex Method or evolutionary
algorithm for the local optimization. It lacks global optimization methods.
Using these methods, path optimization of existing mechanism can possibly
be modeled. However, it is up to the user to define the objective function.

Thus, features of SAM can be summarized as
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Figure 5.4: Synthesis and Analysis of Mechanisms Dashboard

• Analysis

1. N-bar multi degree of freedom mechanisms simulation upto 10
simultaneous inputs (revolute and prismatic joints).

2. Detailed graphing of position, velocity and acceleration data.

3. Can simulate gears and chains

4. Force analysis

• Synthesis

1. Path synthesis possible but difficult.

2. Motion synthesis of four-bar mechanism for 3 poses using graphical
method.

3. Function generation of four-bar mechanism for ≥ 3 input-output
angle pair.

4. Exact and approximate straight line mechanisms
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5.5 GIM

GIM [49] has been developed by COMPMECH research group in the Uni-
versity of the Basque Country UPV/EHU. Fig. 5.5 displays the dashboard
of GIM. Mechanisms with n-ary elements joined by revolute and prismatic
pairs can be simulated in GIM, The position problem is solved iteratively
using a numerical method.

Although the focus of GIM is analysis of mechanisms, it does have some
synthesis capabilities. It uses graphical method to do 3,4,5 precision point
synthesis. Motion synthesis for 3,4 pose is also possible in the software.
Function generation for three input-output angles can be done. All of these
synthesis options are very limited and doesn’t give the user freedom to specify
an arbitrary number of inputs. Also, it is not freely distributed which restricts
its usage.

Figure 5.5: GIM Dashboard

• Analysis

1. N-bar multi degree of freedom mechanisms simulation(revolute
and prismatic joints).

2. Verbose graphing of position, velocity and acceleration data.
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3. Can simulate cams, gears and chains

4. Static analysis

• Synthesis

1. Path synthesis of four bar mechanism for 3,4,5 precision points.

2. Motion synthesis of four bar mechanism for 3,4 poses.

3. Function generation of four bar mechanism for 3 input-output
angle pair.

5.6 Limitations of existing software

After analyzing the most prevalent kinematic softwares, these are the com-
mon drawbacks observed

• None of the softwares is able to do n-point path synthesis for four-bar
mechanisms.

• None of the softwares is available across all platforms i.e. on PC, Mac,
and Mobile. Most of them require initial setup and installation.

• Majority of softwares have not been updated in a long time. They
have old GUI’s which is difficult to understand and use. This leads to
a steep learning curve for newcomers.

To the best of authors knowledge, this thesis outlines the first attempt
at n-point Path Synthesis using web-based implementation. Also, this is the
first attempt to implement Generalized Mixed Synthesis.
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Chapter 6

Application Design Guiding
Principles

This section outlines the design principles which have guided the course of
application development and their immense importance. The goal is to create
a kinematic analysis and syntheses software which is accessible everywhere,
modular, scalable, and fast. It also needs to be easy to understand and use.

The software has been created upon MotionGen, a four-bar analysis and
motion synthesis software. Henceforth, this newly developed software imple-
mentation of the previous MotionGen is referred to as MotionGen 2.0. Finer
details comparing features of old software to new software has been discussed
in next section. This section delves into the design philosophy incorporated.

6.1 Design Paradigm: MVC

The Model-View-Controller design pattern (MVC) is a global high-level pat-
tern which acts upon the structure of software and basically separates the
core logic from the rest of user interface. Using MVC design on an object-
oriented programing language is especially beneficial to a codes structure.
MVC self-enforces a structure on the codebase, making it more reusable and
its communication channels better defined. As a result, the software is ex-
tremely adaptable to changes i.e. new functionality can easily be added or old
obsolete functionality removed. Thus, MVC facilitates better maintenance
and a robust program structure.

The MVC design pattern directs the programmer to group all objects
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into three types of objects: model, view, and controller. This categorization
is done based on an object’s role in software. Once the classification is done,
MVC architecture has a set of well-defined guidelines which needs to be
followed to standardize the exchange of data between these three individual
types of object types. Thus, to follow the MVC framework, it is of paramount
importance that the application designer chooses each system object to fall
into one of three basic object types.

6.1.1 Model

The model-objects is tasked with managing the core functionality of the
application and stores all the data which defines the state of the application
at any given point in time. It communicates with view objects who query
it for information related to present system state. The controller object can
instruct the model object to change its state based on user intent.

For MotionGen2.0, the salient functionality is twofold, namely analy-
sis and synthesis. Model objects containing analysis data include Links,
Joints, and Linkages while the synthesis data is held in Points, Lines, Poses,
and Path. Multiple instances of these model objects represent the state of
workspace at any given point in time.

6.1.2 View

The view-objects is tasked with managing the display or communication of
information to the user. It communicates with model objects and gets the
necessary data required by the user by querying state data. It then presents
this information usually in an audio-visual manner.

For MotionGen 2.0, HTML layered canvas acts as view objects on which
graphics are drawn. These graphics are dependent on the data obtained from
the models representing system state.

6.1.3 Controller

The controller sole purpose is to decipher the mouse, keyboard and touch
inputs from the user. It then processes this information and instructs model
and view objects to make appropriate changes. Thus, it provides the interface
between the user and the application.
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In MotionGen 2.0, the controller is tasked with deciphering touch, mouse
or keyboard input and deciding which action to carry out. This includes
changes to model objects or view objects.

6.1.4 Passive model

There are two types of MVC models, passive and active. In a passive model,
only the controller objects can instruct the model object to change. However,
in an active model, both view and controller objects have the ability to
manipulate the model object.

Passive model is being used as it is simpler and does not require an extra
observer class to keep track of all changes happening to system state. Thus,
when the controller modifies the model object, it handles the responsibility
of instructing the view object to update itself accordingly. The model in
this scenario is completely independent of the view and the controller, which
means that there is no way for the model to report changes in its state.

Fig. 6.1 displays the flow of information through the software. Note that
model objects don’t push data themselves. It needs to be pulled by the view
or pushed by the controller. As a result, the model has the capability to be
a self-sufficient unit while view and controller are dependent on the model
for information. This separation is what empowers the MVC approach and
allow independent programming and testing of core logic from user interface.

Figure 6.1: Passive MVC Architecture
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6.2 Design Paradigm: RESTful web service

The Internet is the glue that binds diverse devices ranging from PC to mobile
together. It is a neutral platform which is accessible to all. To reach out to
a maximum number of users, it is imperative to embrace the web as the
development platform.

RESTful web services are built to work best on the Web. REST was
first introduced by Roy Fielding in year 2000 [50]. Representational State
Transfer (REST) is a web service architectural style which proposes certain
guidelines to enhance the performance, scalability, and modifiability of the
service on web.

RESTful directives focus on creation of a stateless service which can be
used in a client/server framework easily. These stateless services offered
through web are termed as web resources and they are accessible using unique
Uniform Resource Identifiers (URIs). As a result, standardized interface to
web resource can be achieved. The communication to these web resources is
usually using HTTP which itself is a stateless protocol.

The set of rules which enable a web service to adopt the RESTful archi-
tectural style are as follows.

• Addressability: It is mandatory for each web resource exposed by
the RESTful service to be identifiable on web. To accomplish this,
URIs are employed as global resources addresses. Using these URIs,
the client can make use of resources available with the web service.

• Uniform interface: The availability of web resources is established
using a standardized stateless protocol like HTTP. Resources can sub-
sequently be manipulated using a fixed set of four create, read, update,
delete (CRUD) operations. For HTTP protocol, these turn out to be
PUT, GET, POST, and DELETE requests.

• Self-descriptive messages: Requests to web resources need to be
representation independent. This implies the server should be able to
handle a variety of data formats, such as HTML, XML, plain text,
JSON, etc.

• Client-server architecture: The motivation is to divide the appli-
cation into manageable chunks. User interface concerns are separated
from data storage and computation concerns. As a result, both the
components can be developed independently of each other.
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• Stateless interaction: Each interaction with the web service need
to be self-sufficient and contain all the required data. Client-side in-
formation like the session state can be stored only on the client itself.
Thus, the web service is unaware of any past or future interactions with
client. If some information needs to be persisted, a database needs to
be used and some kind of authentication system needs to be adopted.

• Layered system: The client connects to an intermediate web service
which then handles the request and proxies it to relevant service. This
operation happens automatically without the client knowing anything
about it. This improves system scalability and stability. The interme-
diate server can also be used for load balancing.

Thus, creating RESTful web services helps transcend the boundaries im-
posed by platforms and devices. The client-server model enables dynamic
updates to the web application. The client-server communication is stan-
dardized, making the application inherently scalable and modular.

In MotionGen2.0, resource identification is done by assigning different
URLs to independent operations like path synthesis, motion synthesis, and
mixed synthesis. Use of HTTP CRUD operations ascertains a standard in-
terface. The server can handle requests containing XML, JSON or plain text
files. Each query contains sufficient information for the server to process
it independently enabling the server to be stateless. A multi-layer server
architecture is established to handle static content requests, computation
intensive requests and progress queries separately. This enhances the scala-
bility of overall system. More details about MotionGen2.0’s server back-end
and client front-end have been presented in next chapter.

6.3 Stack selection: MEAN

A Web stack refers to a group of software which is used in tandem for the
purpose of web development. Some of the main components of a minimal web
stack are an operating system, web server, database server, and programming
language. LAMP, which stands for Linux, Apache, MySQL, and PHP, is one
traditionally used and well-established web stack. However, lately, newer
stacks have gained usage over LAMP and offer many new advantages. MEAN
is one such web stack which is of interest.
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MEAN consists of JavaScript-based tools MongoDB [51] (database sys-
tem), Express.js [52] (backend web framework), AngularJS citeangularjs (front
end frame work), and Node.js [53] (runtime environment) used to develop
web applications. MEAN stack consists of all the basic ingredients needed
to create a RESTful web service.

MEAN stack has been chosen to develop MotionGen2.0. It offers numer-
ous advantages over other web stacks. Most important advantages it has
are

• It lets the developer write the entire code in JavaScript, be it back-end
or front-end.

• It provides a more flexible noSQL database than conventional relational
databases.

• All the MEAN stack technologies are open source and available for free.

Each of the technology in MEAN stack and its use in MotionGen2.0 has
been discussed in a later section.

6.4 Mobile App: Apache Cordova

Mobile operating systems have conventionally been app driven instead of
browser-based technologies. To target mobile users, one needs to create a
mobile app catered to each mobile platform like ios, android, etc.

One way is to create native apps for each platform. This requires a
different codebase for each platform in their programming language of choice.
For example, applications in Android are developed using Java while those
on iOS requires Objective-C or Swift. Maintaining these native apps is time
intensive and redundant as updating a feature requires equal work on each
platform. To get over this disadvantage, MotionGen2.0 for mobile has been
used using Apache Cordova [54] framework.

Apache Cordova is an open-source mobile development framework which
uses standard web technologies like HTML [55], CSS [56] and JavaScript [57]
for cross-platform development. It effectively eliminates programming for a
specific mobile platform and replaces it with standardized web development.
Apache Cordova provides native application wrappers which run web-pages
in the form of webViews. WebView can be thought of as emulated browsers
within a native app. Thus, when a Apache Cordova application is launched,
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a WebView is loaded within the app and the code is executed on it. This is
a huge advantage as it permits the use of web-based front-end code as the
apps source code. This standardizes the development process and features
can simultaneously be pushed to both web and mobile.

Apache Cordova began as PhoneGap [58], a mobile development frame-
work created by Nitobi, and was later acquired by Adobe. Adobe contributed
PhoneGap to Apache [59] to be developed as open source under the name
Cordova. Currently, Adobe PhoneGap is the commercial version of Apache
Cordova which Adobe offers with additional features like desktop installer
and online compiler. Although these features are great to have, issues have
been observed with PhoneGap’s buggy integrating with Cordova every re-
lease cycle. In order to maintain stability and reliability, MotionGen 2.0 has
been developed on Cordova and not PhoneGap.

Since apps developed on Apache Cordova are implemented through we-
bViews, they require additional standards-compliant APIs to access device
specific functions such as sensors, device data, etc. These plugins convert
JavaScript functions into native functions. MotionGen 2.0 uses plugins for
file access, camera, email, file open, file copy, file sharing, PDF export and
GIF export [60–69].

6.5 User experience: Response Time Limits

Quick reactiveness of application to user interaction is of utmost importance
to conserve workflow. As a result, one of the most important usability metric
for any website is its speed. The time it takes a web application to respond
to user input is measured as the response time.

As Nielsen [70] discusses, speed affects the usability of a website in two
ways. Firstly, a user has a limited working memory where information quickly
degrades if engagement is not continuous. Secondly, waiting for the website to
respond does not play well with a user’s psychological desire to have control
over the machine. This leads to a situation when user detaches from his
workflow and loses his focus.

This high sensitivity of users work efficiency to website response time was
first looked into by Miller [71] and further explored by Nielsen. They propose
three response-time limits established based on their experiences which are
as follows.

• 0.1 second is the response-time limit for having the user feel that the
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application is reacting instantaneously. Thus, to keep the user engaged,
display of results is sufficient and no additional feedback is necessary.

• 1.0 second is the response-time limit for the user’s flow of thought to
stay uninterrupted. Even though the user notices this reaction delay,
no special feedback is usually necessary to keep him engaged. However,
the user does lose the feeling of working directly with the software and
becomes aware of each interaction.

• 10 seconds is the response-time limit for keeping the user’s attention
focused on the task. A feedback is mandatory to communicate expected
completion time, especially when response time is variable. This gives
user the opportunity to engage with other tasks while waiting for the
computer to finish

Thus, application response time is paramount to conserving a user’s work-
flow. To implement path and mixed synthesis in MotionGen 2.0, optimization
subroutines are used which are inherently time-consuming. Efforts have been
made to minimize this response time with a least possible trade-off on accu-
racy of the calculations. Also, the progress of server, for a computationally
intensive task, is communicated to the user in real-time to keep him informed
and engaged.

6.6 User Interface: Responsive web design

Responsive web design (RWD) is an approach to web design which makes
web pages adapt and render well on a variety of devices and window or screen
sizes. As MotionGen 2.0 is targeted to work on a multitude of devices, it has
been developed using the principles of RWD. To make sure MotionGen 2.0
looks and function at its best, UI has been tweaked appropriately for large
screens (desktop), medium screens (tablets) and small screens (phones).

6.7 User Interface: Principles of display de-

sign

MotionGen 2.0’s interface has been designed keeping user interaction as its fo-
cus. The interface is intended to provide intuitive controls to the user through
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the design process. Christopher Wickens [72,73] defined 13 principles of dis-
play design in his book “An Introduction to Human Factors Engineering”.
MotionGen 2.0’s User Interface(UI) has been designed by utilizing some of
these principles to create an effective display design. These principles can be
divided into four categories as

• Perceptual principles- Clear display on a variety of screen sizes while
balancing similarity and redundancy of interactions and features.

• Mental model principles- Impress upon user’s intuition by icon,
animation and feature design

• Principles based on attention- Keeping the clutter to a minimum
and providing contextual feature access to user

• Memory principles- Pro-active aiding based on user intent while
allowing consistency between other CAD softwares.

Application of these principles makes a huge impact on user productivity.
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Chapter 7

MotionGen 2.0

Having discussed the guiding principles of application architecture, it is now
time to discusses the implementation and functionality details related to
MotionGen2.0.

7.1 Functionality

The new MotionGen2.0 features a totally new code-base and web-based ar-
chitecture compared to old MotionGen, which was focused exclusively on
mobile devices. Enormous new functionality in both domains, mechanism
analysis and synthesis, have been added in MotionGen2.0. It can now simu-
late one and multi-degrees of freedom planar n-bar linkages. It also has path
and mixed four- bar synthesis capabilities in addition to motion synthesis.
These additions make MotionGen2.0 a cutting-edge platform for mechanism
designers accessible easily through the web.

The analysis capability of MotionGen2.0 include simulation of

• Multi degree of freedom n-bar mechanisms having revolute joints with
sequential multi-inputs.

• Single degree of freedom n-bar mechanisms having revolute joints.

• Single degree of freedom 4-bar mechanisms having prismatic or revolute
joints.

• Serial chain mechanisms.
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The synthesis capability of MotionGen2.0 include

• Motion Synthesis (≥5+point/line constraints, Tolerance based)

• Path Synthesis (≥5pts)

• Mixed Synthesis (≥3pose+≥2path)

• Serial coupled chain mechanisms Synthesis (≥5pts)

The focus of this document is synthesis and architecture related enhance-
ments offered in MotionGen2.0. For more details regarding algorithms used
to synthesize mechanisms, refer Chapter 2,3,4. A detailed study of analysis
related additions in MotionGen2.0 is available in [74]

Other MotionGen2.0 backbone functionalities, which enable the user to
interact with analysis and synthesis algorithms are as follows

• Platform - Web, Appstore

• User interaction - Touch, mouse

• Input - Text, XML

• Output - Text, XML, Pdf, Gif

• Tracing - image, camera

• Sample example problems

• Workspaces for multiple simultaneous workflows

The figure below summarizes the capability of MotionGen2.0 in a nice
graphical form.

All the code-base for MotionGen2.0 resides on the Server (also referred as
back-end). The server sends user-facing code (also referred as front-end) on
request by the user through the browser or app. Synthesis calculations are
handled by the server while analysis computation is done locally on user’s
device. This delicate load-balance enables real-time simulation with scalable
synthesis computation power. Details about technologies used in back-end
and front-end are discussed in next sections.
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Figure 7.1: Functionality of MotionGen2.0 (Green: newly added, Yellow:
updated, White: no change)

7.2 Back-end

7.2.1 Server Hardware

The hardware specification of server module are as follows

• Processor- 8x Intel Xeon CPU E5620 @ 2.40GHz

• Memory- 8161MB

• Storage- 2x ATA WDC WD1602ABKS-1 160GB, 1x ATA SAMSUNG
HE161HJ 160GB

The storage devices have been setup in RAID configuration to mirror each
other’s data as a failsafe.

The software being used is Ubuntu Server 16.04.3 LTS which is an open
source platform. It is the most used Linux server operating system because
of its support and reliability.
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7.2.2 Node.js

Node.js [53] is a server-side environment that allows Node developers to build
servers and network applications with JavaScript for the first time. This
means entire sites can be run on a unified JavaScript stackboth the client-
side software and the server-side software.

Its an asynchronous, non-blocking, event-driven I/O system due to which,
it can handle many requests concurrently. Its open source, cross-platform and
actively developed. It is light-weight and efficient too.

MotionGen2.0 uses a two server setup. All client requests are handled by
one server while the other is exclusively used for processing computationally
complex and time-taking tasks.

The multi-threaded environment provided by multi-core CPU is being
exploited in MotionGen2.0 using ’cluster’ module of Node.js.

7.2.3 NPM

NPM [75] is the default package manager for Node.js platform. This central-
ized repo can be used to find the best framework and packages for the task
at hand. Some of the packages being used in MotionGen2.0 are as follows

• express [76] is a web application framework that provides you with a
simple API to build websites, web apps and backends.

• http-proxy [77] is a HTTP programmable proxying library that sup-
ports websockets.

• socket.io [78] is a framework which enables real-time bidirectional
event-based communication between server and client.

• socket.io-redis [79] is a library which helps run multiple socket.io
instances that can all broadcast and emit events to and from each
other.

• socket.io-emitter [80] is a library which allows communication with
socket.io servers easily from non-socket.io processes.

• mongodb [81] is the driver API which connects the server to Mongo
daemon and database.

91



• pm2 [82] is a production Runtime and Process Manager for Node.js
apps with a built-in Load Balancer.

• nodemon [83] is a utility that will monitor for any changes in your
source and automatically restart your server. Process manager helps
to keep the application alive forever, restart on failure, reload without
downtime and simplifies administrating.

• fmin [84] is a math library used to implement Nelder Mead optimiza-
tion.

• numeric [85] is a math library used to compute SVD of a matrix.
SVD for a complex system of equations is done by reducing it in higher
dimensional real system [41].

• mathjs [86] is a well-documented math library used for matrix and
complex number manipulation.

• body-parser [87] is a package which parses the body content with
POST HTTP requests.

• http-auth [88] is a package which enables client-side authentication
requirement

• xmldom [89] is a package which enables .xml related functionality

• cordova [90] is a framework which repackages the front-end into a
mobile app.

7.2.4 Mongodb

MongoDB [51] is an open source, document-oriented database designed with
both scalability and developer agility in mind. Instead of storing your data
in tables and rows as you would with a relational database, in MongoDB you
store JSON-like documents with dynamic schemas.

In MotionGen2.0, it is used to store server progress on computationally
heavy tasks and store synthesis data to be used in future for machine learning
purposes.
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7.2.5 Back-end Architecture

The back-end adopts a multi layered architecture with various servers simul-
taneously running each dedicated to a specific task. Figure 7.2 visualizes
how each of these components work in tandem to serve MotionGen2.0 from
web.

Figure 7.2: Back-end Architecture

The individual components of back-end architecture and their intended
task are

• Frontend is the part of codebase served to the user which resides on
their device. It is tasked with accessing server resources according to
user requirements.

• Proxy Server is the server which handles all requests to the website
and proxies them to the relevant route.

• Static Server is the server which hosts Frontend code and serves it to
user device on request to website domain.

• Computation Server is the server which process all computationally
tedious tasks including path, motion and mixed synthesis. It runs in a
multi-threaded environment to take advantage of multi-core processing.
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• Socket Server is the server which process websocket requests to enable
realtime communication between server and clients.

• Redis Server is the server which acts as central communication hub
between multithreaded cluster on Computation Server and single threaded
Socket Server.

• Mongodb Server is the database being used to store the synthesis
information being calculated on computation server.

7.3 Front-end

Front-end includes all the Static web content including HTML, CSS and js
libraries which are served to the user. This is the part of code which actually
resides on the user’s device once it is transmitted from the server. Analysis
computations are done on the front-end as the numeric complexity is lesser.
This also subverts the movement of data to and fro from the server, making
the process almost instantaneous and real-time.

Some of the libraries being used on the front end are as follows

• hammer.js [91] is the library which enables simultaneous handling of
touch and mouse based events on the front-end.

• jquery.js [92] is a library which simplifies how to traverse HTML doc-
uments, handle events, perform animations, and AJAX. All HTTP
requests to the server are made using jquery.

• Numeric.js [85], Math.js [86], Quartic.js [93], Decimal.js [94] and
Complex.js [95] act as the math engine and carry out all front-end
calculations.

7.3.1 UI

The user interface for MotionGen2.0 has been designed to enhance user work-
flow. Contextual options have been added and less frequented options have
been moved to side menu. Effectively, this has reduced display clutter dras-
tically and the user can now focus exclusively on the task of designing or
analyzing the mechanism. The core menus of MotionGen2.0 are as follows
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• Top menu houses the contextual bar and undo, redo, delete buttons.

• Options menu consist of three-tier menu for Linkage control, Syn-
thesis, and Analysis. Each tier can easily be accessed by selecting any
of its other member buttons. Long pressing buttons can make extra
options available.

• Animation menu is tasked with controlling the motion of mechanism
drawn or synthesized.

• Dyad menu consists of a variety of dyads if multiple solutions for a
synthesis problem exists.

• Side menu contains all the other advanced functionality, neatly acces-
sible a click away. It has menus for import, export, image, examples,
settings and path synthesis options.

Fig. 7.3a and Fig. 7.3b shows how each of the mentioned menus actually
looks on MotionGen 2.0.

(a) Side Menu
(b) Dashboard Menus

Figure 7.3: MotionGen2.0 Menus
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7.3.2 Front-end Architecture

The front-end adopts an MVC architecture with clear demarcation between
input, processing and output tasks. Figure 7.4 visualizes how each of these
components work together to display MotionGen2.0 and make it work on
users device.

Figure 7.4: Front-end Architecture

The individual components of front-end and their function are

• User Interface consists of all the HTML content including the multi-
layered canvas, menus, buttons, etc. Any input on the canvas layer
triggers the Application Controller.

• Application Controller is the prominent communication hub of Mo-
tionGen 2.0. It listens for user input and responds by sending appro-
priate data to Drawables object or Server Request Handler object. It
contains all event handlers and is the main entry point into the pro-
gram.

• Drawables is an abstract class which stores the state of Client session
at any given time. It responds to the Application controller and assigns
information to Constraints or Linkage appropriately.
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• Server Request Handler is an abstract class which deals with trans-
fering computationally intensive tasks to web server. It works asyn-
chronously with the server which is in contrast with the synchronous
nature of most of the other operations in the application.

• Constraints is a class which consists of all the synthesis constraint info
including Poses, Path points, Lines and Points. It assigns information
based on the instructions that it receives from the Drawables class.

• Linkages is a class which consists of all the analysis data like the Links,
Joints, Curves, Input Rpm’s, etc. It also assigns information based on
the instructions that it receives from the Drawables class.

7.4 Case study

This section presents a step by step process which the user can follow to syn-
thesize his own mechanisms. Motion, Path, and Hybrid Synthesis workflow
have been demonstrated.

7.4.1 Motion Synthesis workflow

Follow the following workflow to synthesize motion using >5 poses.

• Clear the screen by tapping on ’Delete’ icon at the top right corner of
the screen.

• Select ‘Add Pose’ button under Synthesis group in Options Menu.

• Tap on the screen to add a pose

• While adding, touch and drag to set the required orientation of the
pose

• Repeat until the all poses have been inputted. Once 5 poses are in-
putted, MotionGen2.0 automatically synthesizes four bar in real-time.

• Update, delete or add poses as necessary according to the problem
constraints.
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Motion Synthesis is also possible using 3 or 4 poses. The user just needs
to select additional line or point constraints to get the solution mechanism.
The user has the ability to select is a mechanism should follow a subset of
poses exactly and approximate others. An example of Motion Synthesis on
MotionGen 2.0 is shown in Fig. 7.5.

Figure 7.5: Instance of Motion Synthesis on MotionGen 2.0

7.4.2 Path Synthesis workflow

Follow the following workflow to synthesize path using >5 path points.

• Clear the screen by tapping on ’Delete’ icon at the top right corner of
the screen.

• Long press ‘Add Pose’ button under Synthesis group in Options Menu.

• When the ’Add Path point’ button is displayed, select it

• Tap on the screen to add a pose

• While adding, touch and drag to set the path point to the exact required
position.
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• Repeat until all poses have been inputted. Once 5 poses are inputted,
MotionGen2.0 automatically synthesizes a Single degree of freedom
coupled mechanism. This is the default synthesis option selected

• Go into the side menu and access ’Path Synthesis Options’

• In the pop-up dialog box, select local optimization or global optimiza-
tion for Fourier descriptor based synthesis. Select Fourier curve or
B-spline curve for Frenet frame based path synthesis.

• NOTE: The path synthesis is not instantaneous and can take the server
upto 10 seconds to process your request.

• Update, delete or add poses as necessary according to the problem
constraints.

Other advanced options like harmonic count, subdivision recursion, and pa-
rameter control can be controlled from the ’Path Synthesis Options’ popup
box. These options grant the user enhanced flexibility and control over the
synthesis process. An example of Path Synthesis on MotionGen 2.0 is shown
in Fig. 7.6.

Figure 7.6: Instance of Path Synthesis on MotionGen 2.0
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7.4.3 Mixed Synthesis workflow

Follow the following workflow to synthesize mechanism using >2 path points
and >3poses.

• Clear the screen by tapping on ’Delete’ icon at the top right corner of
the screen.

• If you want to input a path point, Long press ‘Add Pose’ button under
Synthesis group in Options Menu and then select ’Add Path point’
button. Then tap on the workspace.

• Similarly ‘Add Pose’ can be selected

• Note: The order in which poses and paths are inputted decides the
Fourier descriptors of task path.

• Repeat until all poses have been inputted. Once the minimum num-
ber of required constraints are inputted, the server will automatically
compute the mechanism and display it onscreen.

• NOTE: The mixed synthesis is not instantaneous and can take the
server upto 10 seconds to process your request.

• Update, delete or add poses or path points as necessary according to
the problem constraints.

The server automatically uses the modified re-parametrization to find smoothest
path curve through the inputted constraints. The user has the flexibility of
order in which he inputs poses and path points. This is very similar to prac-
tical situations where the user knows just some intermediate orientations.
An example of Mixed Synthesis on MotionGen 2.0 is shown in Fig. 7.7.

This completes the overview of MotionGen 2.0
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Figure 7.7: Instance of Mixed Synthesis on MotionGen 2.0
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Chapter 8

Conclusion and Future Work

This thesis claims original contributions in following areas

• Introduces MotionGen2.0, the first ever web-based scalable application
capable of performing Motion, Path, and Mixed Synthesis.

• A re-parameterization scheme to optimize Fourier parameters for Path
synthesis.

• A Fourier based Mixed synthesis approach which unifies Path and Mo-
tion Synthesis.

Implementation of deterministic and stochastic optimization techniques
has been done to solve the Path Synthesis problem. A framework to find the
least square solution of a complex system of equation using SVD has also
been implemented.

Various user-centric tweaks have been implemented to enhance the us-
ability of existing software. Combined with a polished user interface and
a powerhouse of capability, MotionGen2.0 aims to inspire professionals and
students to design.

8.1 Future Work

The computation of synthesized mechanism is still not real-time and has
immense scope for improvement. Use of Machine Learning to train a neural
network which gives a good approximate mechanism is being looked into.
This would cut down runtime immensely.
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Eqn. 3.17 derived for mixed synthesis can be used in pure over-constrained
motion approximation problem to interactively guide the user towards a bet-
ter mechanism. Calculation of best pose orientation would be possible and
this flexibility would enhance the design process.

MotionGen2.0 only supports Path and Mixed synthesis of RR dyads. An
algorithm which does simultaneous type and dimensional synthesis for Path
problem is an interesting prospect.
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