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Abstract of the Dissertation

Analytical and Machine Learning based Frameworks for Synthesis

of Planar, Spherical and Spatial Mechanisms

by

Shashank Sharma

Doctor of Philosophy

in

Mechanical Engineering

Stony Brook University

2020

During the product design phase, an engineer uses kinematic synthesis

to create multiple concepts. Conventionally, kinematic synthesis has been

studied by researchers for the purpose of synthesizing a pure motion or path.

However, practical design problems are usually messy and constitute a mix

of motion and path constraints. Also, these methods have been limited to

synthesizing only one type of mechanism among planar, spherical, and spatial

mechanisms.This research attempt to unify path and motion synthesis within

a single general framework and enhance the concept generation process by

producing planar, spherical, and spatial mechanisms.

In this work, both analytical and machine learning techniques are ex-

plored to solve the Alt-Burmester problem for planar and spatial mechanisms.

Also, new algorithms have been proposed for unifying the analysis and motion

synthesis of planar, spherical, and spatial mechanisms.
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Chapter 1

Introduction

Maker culture is a new trend built upon DIY and hacker movement

which encourages the creation of new devices and tinkering with the old.

It spans electronics, robotics, 3-D printing, metalworking, and woodworking.

The rise of the maker culture is closely associated with the rise of hackerspaces,

Fab Labs, and other “makerspaces” where like-minded individuals share ideas,

skills, and tools. University campuses have especially been a hotbed for mak-

erspaces. With the rise of cheap 3-D printing technologies and low-cost sensors,

actuators, and micro-controllers, manufacturing tools have become accessible

to many.

Thus, with the recent maker-movement and democratization of manu-

facturing capability, the creation of new devices is within everyone’s grasp.

However, there is still one missing piece. There is a lack of machine design

tools for mechanism synthesis which can be used by creators. Unfortunately,

design theory for even the simplest of mechanism i.e. a four-bar is too complex

for the uninitiated. This chasm needs to be filled for real innovation to thrive.

During concept generation, a designer breaks down a task into multiple

constraints and criteria. Mechanisms satisfying the constraints are deemed

feasible and the best mechanism is chosen based on the specified criteria. The

type of constraints a designer can impose for a mechanism design problem

are extremely diverse. The constraints could include the motion of a moving
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link, path traced by a point on a moving link, relationship between the input

and output links, position of grounded joints, lengths of moving links, etc.

Also, the space of solution conceptual designs can involve planar, spherical,

and spatial mechanisms.

This dissertation aims to improve the state-of-art in the field of kine-

matic mechanism analysis and synthesis. New path and motion synthesis al-

gorithms have been proposed which can generate a diverse and more accurate

family of concepts. We also generalize the path and motion problems as the

Alt-Burmester problem and propose analytical and machine learning based

algorithms to synthesize planar and spatial mechanisms respectively. A real-

time unified approach to simulate planar, spherical, and spatial mechanisms

with a variety of joint types has also been proposed.

Chapter 2 presents an improved approach for path synthesis of planar

mechanisms. Fourier descriptor based path synthesis algorithms for generation

of planar four-bar mechanisms require assigning time parameter values to the

given points along the path. An improper selection of time parameters leads to

poor fitting of the given path and sub-optimal four-bar mechanisms while also

ignoring a host of mechanisms that could be potentially generated otherwise.

A common approach taken is to use uniform time parameter values, which

does not take into account the unique harmonic properties of the coupler path.

In this chapter, we are presenting a non-uniform parametrization scheme in

conjunction with an objective function that provides a better fit, leverages

the harmonics of the four-bar coupler, and allows imposing additional user-

specified constraints.

In Chapter 3, an analytical algorithm is proposed to solve a new class of

problems, called Alt-Burmester problems, for planar mechanisms. This chap-

ter presents a generalized framework to solve m-pose, n-path-points mixed
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synthesis problems, known as the Alt-Burmester problems, using a task-driven

motion synthesis approach. We aim to unify the path and motion synthesis

problems into an approximate mixed synthesis framework. Fourier descriptors

are used to establish a closed-form relationship between the path and orien-

tation data. This relationship is then exploited to formulate mixed synthesis

problems into pure motion synthesis ones. We use an efficient algebraic fitting

based motion synthesis algorithm to enable simultaneous type and dimensional

synthesis of planar four-bar linkages.

Chapter 4 proposes a framework for unified analysis of planar, spherical

and spatial mechanisms. This chapter presents a geometric constraints driven

approach to unified kinematic simulation of n-bar planar and spherical linkage

mechanisms consisting of both revolute and prismatic joints. Generalized con-

straint equations using point, line and plane coordinates have been proposed

which unify simulation of planar and spherical linkages and are demonstrably

scalable to spatial mechanisms. As opposed to some of the existing approaches,

which seek to derive loop-closure equations for each type of mechanism sep-

arately, we have shown that the simulation can be made simpler and more

efficient by using a unified version of the geometric constraints on joints and

links. This is facilitated using homogeneous coordinates and constraints on ge-

ometric primitives, such as point, line, and plane. Furthermore, the approach

enables simpler programming, real-time computation, and ability to handle

any type of planar and spherical mechanism. This work facilitates creation of

practical and intuitive design tools for mechanism designers.

In Chapter 5, a novel motion synthesis algorithm is proposed which si-

multaneously synthesizes planar, spherical and spatial mechanisms. There

exist many approaches in literature that solve the kinematic motion synthesis

problem independently for planar, spherical, or spatial mechanisms. While it
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is well-known that planar and spherical mechanisms can be regarded as spe-

cial cases of spatial mechanisms, most synthesis methods break down when

presented with degenerate data. A unified approach to spatial, spherical, and

planar mechanism synthesis has been elusive. In this chapter, we present a

novel method to generate planar four-bar, spherical four-bar, and spatial 5-

SS mechanisms using a unified algorithm and in the process enable a unified

treatment of the Burmester problem. For a spatial motion problem where all

the poses lie on a sphere or a plane, we show that there exist 3-∞ spherical-

spherical (SS) solution dyads or planar-spherical (PS) solution dyads, respec-

tively. We also show that for a spatial five pose problem where all poses lie on

a sphere or plane, there exists a 2-∞ solution space of spherical RR dyads or

planar RR dyads. This multiplicity of solutions are intelligently constrained

to find unique dyads on a characteristic-sphere or -plane representing spherical

or planar four-bar mechanism, respectively. The proposed approach removes

the limitations of existing spatial synthesis algorithms which fail to synthesize

possible mechanisms when the poses lie on a sphere or a plane. The algorithm

is efficient and real-time in nature. Several examples are presented to validate

the proposed algorithm.

In Chapter 6, we propose a machine learning based approach to solve the

path synthesis problem for spatial mechanisms. The synthesis of spatial mech-

anisms for defect-free path generation has not received a lot of attention. In

this chapter, we focus on the synthesis of 5-SS mechanisms and use a machine

learning based approach. First, we create a coupler path database using a

solver based on the iterative Newton-Raphson optimization algorithm. Subse-

quently, a data cleanup, normalization, balancing, and augmentation pipeline

is established based on intrinsic properties of space curves namely curvature

and torsion. Finally, we use an unsupervised learning algorithm based on Vari-
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ational Autoencoder combined with K-means clustering to find a multiplicity

of defect-free 5-SS mechanisms and examples are presented.

Finally, Chapter 7 proposes a machine learning based approach to solve

the Alt-Burmester problem for spatial mechanisms. An m-pose, n-path-points

kinematic synthesis problem is known as the Alt-Burmester problem. It is the

generalization of well-studied motion and path synthesis problems and uni-

fies them into a single framework. In this chapter, we present a machine

learning based algorithm to synthesize defect-free spatial 5-SS platform mech-

anisms, wherein a moving platform is connected to a fixed base via five SS

(spherical-spherical) dyads. While a lot of work has been done in the synthe-

sis of planar and to some extent spherical mechanisms, generating mechanisms,

which are free of circuit, branch, and order defects has proven to be a diffi-

cult task. This task is even more difficult for spatial mechanisms, which can

consist of a large number of circuits and branches. Combining this with the

Alt-Burmester problem, solving such problems using a purely analytical ap-

proach becomes even more unmanageable. In this chapter, we present a novel

machine learning algorithm based on a Variational Auto-Encoder (VAE) ar-

chitecture, which helps capture the relationship between path and orientation

properties of the motion of the 5-SS mechanisms. This helps in reformulating

the mixed synthesis problem into a pure motion synthesis problem. This ap-

proach is scalable to any single degree of freedom spatial mechanism. First,

we create a database consisting of possible 5-SS linkage’s coupler motions.

These motions are calculated using an iterative Newton-Raphson algorithm

based solver. Subsequently, a data cleanup, normalization, balancing, aug-

mentation, and masking pipeline is established using curvature and torsion of

path-curves and quaternion based orientation data. Then, a Variational Au-

toencoder based machine-learning model is trained to capture the relationship
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between path and orientation data. This helps is reformulating the mixed

synthesis problem into a pure motion synthesis problem. Finally, K-means

clustering is used to find a multiplicity of defect-free 5-SS mechanisms, and

examples are presented. The outlined approach can be scaled to any single

degree-of-freedom spatial mechanism synthesis.

Figure 1.1: Dissertation Contributions

Thus, in this dissertation, we propose multiple algorithms which pushes

the state-of-art in the field of kinematic analysis and synthesis of closed-loop

single degree of freedom mechanisms. The summary of major contributions of

this dissertation have been visualized in Fig. 1.1.
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Chapter 2

An Optimal Parametrization Scheme for Path Generation using

Fourier Descriptors for Four-bar Mechanism Synthesis

2.1 Introduction

This chapter is concerned with the path generation problem, wherein

a path is usually given as a sequence of discrete points in R2 and the goal

is to find dimensions of a planar four-bar mechanism such that a point on

the coupler of the mechanism traces the given points as close as possible [1].

Optimization-based techniques attempt to minimize an objective function and

find mechanisms, which best approximate a curve generated by using Fourier

series [2]. This curve, called the task curve requires point data on the pre-

scribed path and associated time parameter values. Discrete Fourier trans-

form (DFT) has been used to calculate the Fourier coefficients or Fourier

descriptors (FDs) of the task curve from the prescribed path. FDs have been

frequently used in computational shape analysis to create the objective func-

tion [3, 4, 5, 6, 7, 8, 9]. This chapter focuses on solving the path generation

problem using a FD based technique.

McGarva and Mullineux [5] studied the inherent dependency of FDs of a

task curve on time parametrization and concluded that different parametriza-

tion leads to different FDs. In previous studies, this limitation has been ignored

and the parametrization has been assumed to be uniform. This results in a

task curve which might be sub-optimal for use in mechanism synthesis.
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Fig. 2.1 demonstrates an instance, where using a non-uniform parametriza-

tion yields a better mechanism than a uniform parametrization. A test mech-

anism is taken and ten arbitrary points are sampled on its coupler curve to

generate the input data. Once the task curve is calculated, a four-bar cou-

pler curve is fitted to synthesize a mechanism for each case. Comparing the

resulting mechanisms with the input shows that non-uniform parametriza-

tion fits the points more accurately and better matches the first mechanism.

Although, in Computer Aided Design (CAD), finding parametrization for a

given sequence of points in the context of curve interpolation is a common

problem, here we have the additional burden of ensuring that the parametriza-

tion is compatible with the properties of the coupler curves of planar four-bar

mechanisms. In the example presented later on, we will show that the opti-

mized task curve matches the harmonic contents of the coupler curve better

than an arbitrary choice of parameters. Finding this optimum non-uniform

parametrization serves as the motivation of this chapter.

Figure 2.1: Path generation of two four-bar mechanisms; one using uniform
parametrization while the other using optimal non-uniform parametrization

Recently, Li et al. [10] proposed an approach to eliminate time depen-

dency using arc length parametrization. It is well-known in CAD community

that finding an explicit closed-form expression for arc-length parametrization is

impossible. As a result, they numerically guess the non-uniform parametriza-
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tion using the distance between input points. Geometrically, the formulated

parametrization is close to being time-independent. But this approach forces

the coupler point to move at a constant speed along the task curves and elim-

inates a host of other possible four-bar mechanisms.

In this chapter, a novel methodology which calculates the optimal parametriza-

tion for a sequence of points has been proposed. For a four-bar coupler curve,

the magnitude of its higher order harmonics has been observed to be negli-

gible by Freudenstein [3] and Li et al. [11]. This property is used to search

for an optimal parametrization to generate a task curve with low magnitude

higher order harmonics. Coupler speed criteria for enhanced control over the

task curve has also been incorporated. A new cost function is proposed that

combines the cost of fitting to the given data points, the cost of low magnitude

higher order harmonic, and the penalty for larger speed ratios. Nelder-Mead

optimization is used to compute two critical state space parameters that mini-

mize the cost function and provide optimized time parameters. Thereafter, we

use the algorithm presented by Wu et al. [7] to synthesize a four-bar mecha-

nism from the optimal task path. This algorithm fits task curve FDs to coupler

curve FDs using a four-dimensional search space instead of the conventional

ten-dimensional search space.

The rest of this chapter is organized as follows. Section 2.2 reviews an

existing FD based path generation approach, which supplements the proposed

algorithm for four-bar mechanism synthesis. Section 2.3 introduces a family of

non-uniform parametrization and a methodology for finding the optimal one

among them. Section 2.4 presents an example, which illustrates the effective-

ness of the proposed approach.
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2.2 Review of Fourier descriptor based path generation

This section provides a brief overview of an existing FD based path

generation algorithm proposed by Wu et al. [7], which is used in conjunction

with the improved task curve generation method as discussed in Sec. 2.3 for

four-bar synthesis.

In this method, input path points are used to calculate a task curve

described by a trigonometric polynomial curve with an open interval and is

represented as

z(t) =

p∑
k=−p

Tke
ikωot ∀ t ∈ [0, tmax], (2.1)

where z(t) = x(t) + iy(t) denotes the point coordinates in complex form at

time t, k are the frequency indices, Tk are the FDs, ωo is the angular velocity

of crank, and [0, tmax] is the time interval over which the curve is defined. It

has been shown that a task curve with p = 5 captures the four-bar coupler

path very accurately and is deemed sufficient for practical implementation [11].

Taking ω0 = 2π and tmax ∈ (0, 1] represents the possible closed and open task

paths. The FDs are calculated by solving the least square fitting problem with

the objective function as

∆ =
n∑
i=1

∥∥∥∥∥z(ti)−
p∑

k=−p

Tke
ikωoti

∥∥∥∥∥
2

, (2.2)

where n is the number of input points. If n < (2p + 1), then the highest

2
⌈
2p+1−n

2

⌉
harmonics are specified as zero to find a unique solution. Here, d...e

represents the ceiling function. Finding the domain [0, tmax] for the open task

path is a one-dimensional optimization problem for minimum error measure

defined in Eq. (2.2). Once a time parametrization is chosen or assumed, the

task curve can be calculated.

A four-bar mechanism can be represented by the design parameters x0,

y0, l1, l2, l3, l4, r, α, θ1, and initial crank angle φ0 as displayed in Fig. 2.2.
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Figure 2.2: A planar four-bar mechanism showing dimensional parameters

The analytic equation of coupler point P can be given as

P = A0 + l2e
iθ1eiφ + reiαeiθ1eiλ, (2.3)

where λ is the coupler angle as shown in Fig. 2.2 and A0 is the complex form

of the fixed pivot given by (x0, y0). A closed form expression for λ using loop-

closure criteria is available in literature [7], and can be approximated using

FDs as

eiλ =

p∑
k=−p

Cke
ikφ, (2.4)

where Ck are coupler angle FDs whose value depends upon the link lengths l1,

l2, l3 and l4, and φ = φ0 + ω0t.

The coupler path can also be expressed as a Fourier series given in

Eq. (2.5) where Pk are coupler path FDs.

P =

p∑
k=−p

Pke
ikωt. (2.5)

By substituting Eq (2.4) into Eq. (2.3) and collecting coefficients of eikωt to

11



form Eq (2.5), we can express the Pk as

P0 = reiαeiθ1C0 + A0, (2.6)

P1 = reiαeiθ1C1e
iφ0 + l2e

i(θ1+φ0), and (2.7)

Pk = reiαeiθ1Cke
ikφ0|k 6=0,1. (2.8)

The coupler path can now be fitted to the task curve to calculate the

four-bar design parameters using Eq. (2.1) and Eq. (2.5). Equating Tk to Pk

leads to a system of equations with ten unknowns given as following

S =

{
l2,
l2
l1
,
l3
l1
,
l4
l1
, x0, y0, θ1, φ0,C,S

}
, (2.9)

where C = r cos (α + θ1) and S = r sin (α + θ1). Equation (2.8) depends

on six design variables
{
l2
l1
, l3
l1
, l4
l1
, φ0,C,S

}
, while the remaining four variables

{l2, x0, y0, θ1} exist independently in Eq. (2.6) and (2.7). Wu et al. [7] show that

the six-dimensional design space in Eq (2.8) can be further reduced to a four-

dimensional space of
{
l2
l1
, l3
l1
, l4
l1
, φ0

}
by analytically minimizing the following

objective function

I =
∑
k 6=0,1

|Ckrei(α+θ1+kφ0) − Tk|2. (2.10)

This objective function is obtained by summing the squared difference of Pk

given in Eq. (2.8) and Tk.

The direct search method has been used by Wu et al. [7] to solve this

optimization problem. In summary, matching task path FDs to coupler path

FDs using a four-dimensional search space forms the core of this approach.

2.3 Optimum Parametrization

The task curve calculation is inherently associated with the time parametriza-

tion used. However, there are an infinite ways to select a non-uniform parametriza-

tion. To make the problem tractable and facilitate the selection of a single
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non-uniform parametrization, a chord-length based parametrization scheme

for n-points sequence is defined as

t1 = 0, (2.11)

tk = tmax

(∑k
i=2 |zi − zi−1|α∑n
i=2 |zi − zi−1|α

)
. (2.12)

Here, tk represents the time parameter associated with the kth path point, tmax

is the interval domain as defined in Eq. (2.1), zi represents the coordinates of

ith point and α ∈ R is the parametrization control variable (PCV). Varying

the control variable α generates multiple parametrizations. In this scheme,

when α = 0 and α = 1, we obtain uniform and arc length parametriza-

tions, respectively. Physically, uniform parametrization results in a task curve

where the coupler takes equal amount of time to pass through each target

point. Similarly, the arc length parametrization approximates constant speed

motion of the coupler. By varying α, one can generate different parametriza-

tions for the calculation of the task curves, which in turn, could provide a

range of mechanism design solutions and also facilitates selection of an opti-

mal parametrization, leading to mechanisms that provide better fit with the

input data.

To measure the quality of the task curve, we define a cost function as

following

Ct = Cf + Ch + Cs (2.13)

where Cf is the cost attributed to FD fitting error, Ch is the cost due to higher

order harmonic content, and Cs is the cost due to enforced speed criteria on

the task curve.

If the path (zi), PCV (α), and time domain (tmax) are known, the FDs

of an open task curve can be mean square fitted as shown in Eq. 2.2. The

square-root of the residual in the fitting process is normalized to define Cf in
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the cost function and is given as

Cf =
1

n

√√√√ n∑
i=1

∥∥∥∥∥zi −
p∑

k=−p

Tkeikωoti

∥∥∥∥∥
2

. (2.14)

Here, n represents the total path points, zi are the path coordinates, Tk are the

task curve FDs and ti is the time parameter attached to ith point. This term

ensures that the selected parametrization and domain accurately represent the

original point data.

The second term in the cost function, namely harmonic cost, is motivated

by the observation from Li et al. [11] that the magnitude of higher order

harmonics are negligible for four-bars. As a result, task curves whose higher

order harmonics have minimal magnitude would be better prospective curves

for the path synthesis process. To enforce this harmonic criterion, a weighted

harmonic magnitude based metric is defined as

Ch =
1

2p+ 1

p∑
k=−p

(|k|+ 1)β ‖Tk‖ . (2.15)

Here, p is the maximum number of harmonics being considered, β ≥ 1 is a

constant and Tk are the task curve FDs. The term (|k|+1)β adds larger weight

to the higher order harmonics.

In practical scenarios, large coupler speed changes can lead to large in-

duced forces on the links which could compromise their rigidity and render

the kinematic analysis useless. In contrast, a uniform speed motion of the

coupler can also be undesirable in some instances, such as when designing a

quick-return mechanism. Thus, enforcing a speed-based criteria over the task

curve gives users more control in design. To select a task curve with desirable

speed properties, speed cost (Cs) is defined using quadratic penalty function

as follows

Cs = w
[
max(0, Sr,min − Sr)2 +max(0, Sr − Sr,max)2

]
, (2.16)
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where Sr represents ratio of task curve’s maximum to minimum speed. Sr,min

and Sr,max are the minimum and maximum speed ratio bounds enforced by

the designer and w is the penalty weight imposed. In case there are no speed

restrictions, Sr,min and Sr,max can be set to 1 and infinity, respectively. w = 103

has been taken in the implementation. The expression for task curve speed

can be calculated by differentiating Eq. (2.1) which gives

s(t) =

∥∥∥∥∥
p∑

k=−p

ikωoTke
ikωot

∥∥∥∥∥ . (2.17)

Maximum and minimum speeds can be calculated numerically by sampling a

large number of points over the task curve.

Thus, an optimal task curve can be calculated by minimizing the total

cost (Ct) as given in Eq. (2.13). The search space is two dimensional with α and

tmax as the state variables. Thereafter, the optimal chord-length based time

parametrization can be calculated using Eq. (2.11) and Eq. (2.12). Nelder-

Mead optimization has been used for searching the state space. With the

task curve known, a four-bar mechanism can be generated as discussed in

Sec. 2.2. The complete Fourier based path synthesis algorithm using optimum

parametrization has been summarized in the Algorithm 1.

Algorithm 1: Path generation using Fourier descriptor based ap-
proach with optimal parametrization

Input: Set of path points
1 Search for optimum α and tmax by minimizing Ct given in Eq. (2.13).

2 Calculate
{
l2
l1
, l3
l1
, l4
l1
, φ0,C,S

}
by minimizing I given in Eq. (2.10)

3 Calculate {l2, x0, y0, θ1} using Eq. (2.6) and Eq. (2.7) to synthesize a
four-bar mechanism.

Output: Four-bar design parameters

2.4 Example

This example demonstrates the improvement made using the proposed

methodology. A 12-point trajectory is taken as the input and is given in
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Figure 2.3: Synthesized solutions using different parametrizations

Table 2.1. In this example, we use ωo = 2π rad/s (Eq. 2.2) and β = 2

(Eq. 2.15).

Table 2.1: Input point data

No. Coordinate (x, y) No. Coordinate (x, y) No. Coordinate (x, y)
1 0.000,−1.000 5 −2.866,−2.118 9 0.246,−2.135
2 −0.550,−0.942 6 −2.608,−2.488 10 0.876,−1.615
3 −1.696,−1.018 7 −2.098,−2.720 11 0.986,−1.329
4 −2.821,−1.715 8 −0.546,−2.551 12 0.593,−1.123

Table 2.2: Task curve Fourier Descriptors

Parametrization
Descriptor Uniform Optimal Optimal with speed criteria
−5 0.035− 0.051i −0.001 + 0.013i −0.003 + 0.017i
−4 −0.021 + 0.033i −0.034− 0.013i −0.011− 0.007i
−3 0.008 + 0.037i −0.022− 0.014i −0.021− 0.016i
−2 −0.015 + 0.086i −0.009− 0.018i −0.003− 0.036i
−1 0.420− 0.455i 0.412− 0.290i 0.378− 0.261i
0 −0.822− 1.696i −0.960− 1.763i −0.970− 1.764i
1 0.352 + 1.334i 0.715 + 1.167i 0.719 + 1.148i
2 0.074− 0.204i −0.005− 0.072i −0.015− 0.065i
3 0.054− 0.051i −0.053− 0.008i −0.072 + 0.013i
4 −0.051− 0.077i −0.045 + 0.002i −0.021− 0.002i
5 −0.019 + 0.042i −0.002− 0.010i 0.003− 0.032i
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Table 2.3: Coupler curve Fourier Descriptors

Parametrization
Descriptor Uniform Optimal Optimal with speed criteria
−5 0.011 + 0.006i −0.001 + 0.000i −0.001 + 0.000i
−4 0.008 + 0.019i 0.000 + 0.001i −0.001 + 0.000i
−3 0.049− 0.019i −0.006− 0.011i −0.007− 0.014i
−2 0.005 + 0.104i −0.005− 0.020i −0.001− 0.031i
−1 0.430− 0.453i 0.412− 0.291i 0.376− 0.262i
0 −0.822− 1.696i −0.960− 1.763i −0.970− 1.764i
1 0.352 + 1.334i 0.715 + 1.167i 0.719 + 1.148i
2 0.055− 0.170i 0.004− 0.074i −0.006− 0.077i
3 0.000− 0.034i −0.006 + 0.006i −0.004 + 0.007i
4 −0.006− 0.025i 0.003− 0.000i 0.003− 0.001i
5 −0.005− 0.012i −0.001− 0.000i -0.001 - 0.000i

Table 2.4: Synthesized mechanism parameters

Parametrization
Variable Uniform Optimal Optimal with speed criteria

l1 10.020 9.271 10.140
l2 1.921 2.085 1.464
l3 6.719 6.520 3.994
l4 5.423 5.160 8.139
x0 −6.464 −5.560 11.951
y0 1.659 0.931 −2.386
θ1 −0.346 −0.191 0.859
r 12.191 11.519 10.194
α 0.119 0.001 0.661
φ0 0.774 0.764 3.218
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First, we use uniform parametrization to create a task curve. The task

curve is calculated to have tmax = 0.8770 and FDs as given in Table 2.2. The

task curve fitting error, as defined in Eq (2.2), is found to be ∆ = 0.3509.

From this task curve, a mechanism is synthesized to find the four-bar de-

sign parameters. Coupler curve FDs and computed mechanism parameters

are given in Table 2.3 and Table 2.4, respectively. Coupler curve fitting er-

ror as defined in Eq. (2.10), is calculated to be I = 0.0228. The synthesized

mechanism can be viewed in Fig. 2.3a. Next, mechanism synthesis is accom-

plished using optimal parametrization. The task curve is calculated to have

tmax = 0.9336, α = 0.5823 and FDs as given in Table 2.2. The task curve

fitting error is observed to be ∆ = 0.0591, which is better than the previous

case. Subsequently, a mechanism is synthesized and the coupler curve FDs

and the solution mechanism parameters are given in Table 2.3 and Table 2.4,

respectively. The coupler curve fitting error is found to be I = 0.0067, which is

also less than the uniform parametrization case. The synthesized mechanism

can be viewed in Fig. 2.3b. While using non-uniform parametrization enables

the reduction of fitting error ∆, this example demonstrates that a task curve

with low magnitude higher order harmonics decreases I and leads to a better

task-coupler curve matching. Fig. 2.4 displays the comparison of weighted

FDs, given as Tw,k = (|k|+ 1)2‖Tk‖, for uniform and optimal parametrization.

These figures shows that for optimal parametrization case, the magnitude of

the higher order harmonics is less compared to the uniform case for both the

task and the coupler curves.

Finally, mechanism synthesis involving speed criteria is carried out. Speed

ratio for the task curve calculated using uniform parametrization is observed

to be 8.22. Let us assume that the user desires to constrain Sr, such that

1 ≤ Sr ≤ 2. After applying the speed criteria, the task curve is calculated

18



to have tmax = 0.9234, α = 0.7885 and FDs as given in Table 2.2. The task

curve fitting error is observed to be ∆ = 0.1813. The Sr of the generated task

curve is 2. Comparison of task curve speeds has been done in Fig 2.5. It can

be observed that the new task curve has reduced the speed ratio. Synthesized

mechanism design parameters are given in Table 2.4. The coupler curve fitting

error is observed to be I = 0.0444 and the solution is displayed in Fig. 2.3c.

2.5 Conclusion

In this chapter, a non-uniform parametrization scheme has been pro-

posed for the task curve calculation from a given sequence of path points. A

novel methodology to find the optimal parametrization based on fitting accu-

racy, the harmonic properties of four-bar coupler path, and user imposed speed

criteria has been demonstrated. Synthesis of a more accurate four-bar mech-

anism for path generation has been shown using an example. The proposed

approach improves upon the existing FD based path generation algorithm for

mechanism synthesis.
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Figure 2.4: Comparison of task curve and coupler curve weighted FDs for
uniform and optimal parametrization

Figure 2.5: Comparison of task curve speeds obtained with and without speed
criteria
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Chapter 3

A Motion Synthesis Approach to Solving Alt-Burmester Problem

by exploiting Fourier Descriptor Relationship between Path and

Orientation Data

3.1 Introduction

Figure 3.1: An Overview of our Approach to the Alt-Burmester Problems: (a)
specify m-pose, n-path points; (b) a task curve is fit through the m+ n path
points using Fourier series; (c) use the harmonic content of the path data to
find the missing orientations at the n-path points; and (d) finally, compute
both type and dimensions of planar four-bar linkages.

Conventionally, mechanism synthesis problems have been categorized

and studied independently as path, motion, and function synthesis prob-

lems [12]. Path synthesis problems specify only path-point coordinates (xi, yi),

while motion synthesis problems specify pose constraints (xi, yi, ζi), where

(xi, yi) are the coordinates of the path-points or the origin of a moving frame

attached to a given pose, while ζi is the orientation of the moving frame. In

function synthesis, only input-output angle pairs (θi, ψi) are specified. Un-

fortunately, most of the real world problems do not conform to such a rigid

categorization – many practical problems provide a mixture of path, motion
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and function synthesis requirements. However, a synthesis approach which

seamlessly incorporates all the three conventional synthesis problems has been

elusive. As a result, machine designers often have to compromise on design

specifications. In this chapter, the focus is on the synthesis of planar four-bar

mechanisms for a hybrid of path and motion synthesis problems. This prob-

lem formulation, which consolidates both path and orientation data, has been

termed as mixed synthesis in this chapter.

Murray’s group termed the combined path and motion problems as the

Alt-Burmester problems [13] named after Alt’s [14] and Burmester’s [15] work

on path and motion generation, respectively. Brake et al. [16] discuss the

dimensionality of solution sets for a variety of path-point and pose combina-

tions. However, a finite number of solutions exist only for a subset of possible

m-pose, n-path point synthesis problem. For example, there exist finite so-

lutions for nine path-points and for five poses independently. We define such

problems to be fully constrained problems. For a lesser number of path-points

or poses, usually an infinite number of solutions are obtained. Subsequently,

the authors explore only fully-constrained or under-constrained problem sets

where up to nine constraints can be used to find four-bar mechanism param-

eters. This ignores the vast majority of over-constrained problems in m-pose,

n-path point mixed synthesis family of problems, where exact solutions are not

possible and only approximate, albeit useful solutions, can still be obtained.

This is reflective of real-world design problems, which usually impose a large

number of often challenging constraints.

A graphical approach has been presented by Zimmerman [17] to solve the

mixed path, motion and function problem using sketching tools built in mod-

ern Computer-Aided Design (CAD) softwares. The proposed methodology

can conveniently solve under-constrained and fully-constrained mixed synthe-
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sis problems and generate four-bar mechanisms. However, this methodology

is unable to solve generalized m pose, n path-point synthesis problems, which

may be over-constrained. This study does state the possibility of including

prismatic joints in the synthesized mechanism. However, it is not the focus of

study and details on synthesizing mechanical dyads with at least one prismatic

joint are not included.

Motion synthesis turns out to be a mathematically less complex problem

than path synthesis as each dyad can be generated independently effectively

halving the number of unknowns. Typically, path synthesis problems involve

solving a nonlinear system of equations. We have recently presented a gener-

alized framework for solving motion synthesis problems using an efficient al-

gorithm that involves solving a linear system of equations using singular value

decomposition [18, 19, 20, 21, 22]. The algorithm produces multiple solutions

and can compute both the type and dimensions of the four-bar mechanisms.

The algorithm produces results in real-time and is thus amenable to its imple-

mentation in interactive computational design tools [18].

In this chapter, we are presenting an approach to solve the Alt-Burmester

problem by reducing it to a pure motion synthesis problem so that the afore-

mentioned algorithm can be leveraged. In a planar four-bar linkage, the path

of a coupler point is inextricably tied to the orientation of the coupler. This

coupling can be revealed by analyzing and relating the harmonic content of

the path and orientation data. First, an analytical relationship between the

orientation- and path-data is obtained using the harmonic breakdown of the

loop closure equation. Then, this relation is used to reformulate the mixed

synthesis problem into a motion synthesis problem by attaching compatible

orientations to input path points and consequently turning them into poses.

The Fourier approximation based analytical approach proposed in this chap-
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ter can handle almost all possible variations of path points or poses. Once,

the problem has been converted into a pure motion synthesis problem, we re-

purpose our algebraic fitting approach in [21, 22] to solve for four-bar linkages.

Figure 3.1 provides an overview of this approach.

We note that here mixed synthesis does not refer to the mixed exact-

approximate path or motion synthesis, wherein we have a set of precision

and approximate constraints. Our definition of mixed refers to a mixture of

path-point and pose constraints.

This chapter’s original contributions are in 1) the formulation of a Fourier

descriptor based closed-form relationship between coupler orientations and

path, 2) the novel use of this relationship to solve the generalized m-pose,

n-path mixed synthesis problem, and 3) the incorporation of task-driven alge-

braic fitting based motion synthesis within the mixed synthesis algorithm for

synthesis.

Rest of the chapter is organized as follows. Section 3.2 calculates a new

path-orientation formulation from existing four-bar loop closure Fourier de-

composition. Section 3.3 discusses the use of path-orientation relationship to

reformulate mixed synthesis into motion synthesis problem. Section 3.4 re-

views algebraic fitting based motion synthesis algorithm. Section 3.5 proposes

a new algorithm to solve mixed synthesis problem and finally in section 3.6, we

present a few examples to demonstrate the efficacy of the proposed approach.

3.2 Fourier Descriptors based relations

Use of Fourier descriptors is abundant in the domain of mechanism syn-

thesis. It has been used for planar four-bar mechanism synthesis using op-

timization routines [23, 4, 24, 6, 11], atlas-based search algorithms [25, 26],

and machine learning approach [8]. Fourier descriptors have also been used
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to synthesize spherical and spatial mechanism [27]. A class of single degree of

freedom open-loop mechanisms termed as planar coupled serial chain mecha-

nisms [28, 29] have also been generated with the help of Fourier descriptors.

In this section, we are interested in exploring the relationship between

the coupler path and coupler orientation to establish a closed-form relationship

between them. This would give us a framework for dealing with both pose

and path constraints simultaneously. Path and motion synthesis formulations,

which use Fourier decomposition of four-bar closure equation [24, 6, 11] are

used as a starting point here. In [11], Li et al. presented a decomposition of

the design space of four-bar mechanisms by using Fourier descriptors in the

context of planar motion approximation. Harmonic decomposition of four-bar

loop closure equation has been analyzed to independently fit rotational and

translational Fourier descriptors and synthesize motion.

A four-bar mechanism is represented by its design parameters x0, y0, l1,

l2, l3, l4, r, θ1, and α as displayed in Fig. 3.2. These parameters are constant

for a given four-bar mechanism. Coupler angle λ represents the varying ori-

entation of coupler link with respect to fixed link at any given instant. Point

P is the location of the coupler point in the global frame. which is also a

variable. Coupler orientation ζ refers to the orientation of a moving frame

attached to the coupler point, while δ is the constant angle at which moving

frame is attached to coupler with respect to the coupler link line AB. All of

these design parameters are unknown before a mechanism has been synthe-

sized. Our goal is to find an explicit closed-form relationship between coupler

path and orientation which forms the heart of our mixed synthesis algorithm.
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Figure 3.2: Visualization of parameters describing a four-bar mechanism

3.2.1 Coupler angle

The Fourier series representation of the coupler angle λ for a four bar

mechanism is given as

ejλ =
∞∑

k=−∞

Cke
jkφ =

∞∑
k=−∞

Cke
jkωtejkφ0 , (3.1)

where Ck are the harmonic descriptors of coupler angle, φ the crank angle, φ0

the initial crank angle, and ω is the constant angular speed of the input link.

3.2.2 Coupler path

The analytical equation which defines the path of coupler point P for a

four bar mechanism is given by

P = A0 + l2e
jθ1ejφ + rejαejθ1ejλ, (3.2)

26



where A0 is the complex form of the position of input link fixed pivot, l2 is the

length of input link, θ1 is the angle of fixed link, and r and α are the coupler

parameters. Being a periodic function, it can also be represented as a Fourier

series:

P =
∞∑

k=−∞

Pke
jkωt. (3.3)

Substituting (3.1) into (3.2) and then equating resulting (3.2) and (3.3),

we get harmonic descriptors Pk for the path as following

P0 = C0re
j(α+θ1) + (jy0 + x0); k = 0, (3.4)

P1 = C1e
jφ0rej(α+θ1) + l2e

jθ1ejφ0 ; k = 1, (3.5)

Pk = Cke
jkφ0rej(α+θ1); k 6= 0, 1. (3.6)

3.2.3 Coupler orientation

The orientation (ζ) at the coupler point for a four-bar mechanism can

be defined as

ζ = δ + λ+ θ1 = arg(ej(δ+λ+θ1)), (3.7)

where δ is the fixed angle at which moving frame is attached to coupler with

respect to θ1 +λ. As λ varies periodically while δ and θ1 remain constant, the

orientation can be decomposed harmonically as

ej(δ+λ+θ1) =
∞∑

k=−∞

C∗ke
jkωt, (3.8)

where C∗k are the harmonic descriptors for orientation and obtained as

C∗k = Cke
j(δ+θ1)ejkφ0 (3.9)

by substituting for ejλ from Eq. (3.1) in Eq. (3.8).
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3.2.4 Path-orientation relation

With the above relations, it is now possible to find explicit closed form

relations between the Fourier descriptors of coupler path and coupler orienta-

tion data. Using Eqns. (3.4), (3.5), (3.6), and (3.9), relationship between the

harmonic descriptors of path (Pk) and orientation (C∗k) is found to be

C∗0 = (P0 + z2)z1, (3.10)

C∗1 = (P1 + z3)z1, (3.11)

C∗k = Pkz1, (3.12)

where

z1 =
ej(δ−α)

r
, (3.13)

z2 = −(x0 + jy0), (3.14)

z3 = −(l2e
jθ1ejφ0). (3.15)

Using the above relationship, the orientation at coupler point can be

defined exclusively using path harmonic descriptors as follows

ejζ(t) = z1

(
z2 + z3e

jωt +
∞∑

k=−∞

Pke
jkωt

)
. (3.16)

Subsequently, using Eq. (3.16) for n path points, the system of equation

describing orientation at each path point turns out to be

ejζ1

ejζ2

...

ejζn


=



1 ejωt1
∑−p

k=p Pke
jkωt1

1 ejωt2
∑−p

k=p Pke
jkωt2

...
...

...

1 ejωtn
∑−p

k=p Pke
jkωtn




z1z2

z1z3

z1

 . (3.17)

Thus, the orientations at different points of a four-bar coupler path are

dependent on path descriptors and three complex variables z1, z2, and z3, which

are termed as Mixed Synthesis Parameters (MSP). The MSP are dependent
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on four-bar mechanism design parameters according to Eqns. (3.13), (3.14),

and (3.15). The Eq. (3.17) is the key to the mixed synthesis formulation. It

will help us find orientation information for path points as discussed in the

next section.

3.3 Calculating unknown orientations

The aim of this section is to reformulate m-pose, n-path point mixed

synthesis problems into an m+ n- pose motion synthesis problems. To enable

that, generation of orientation data for n path points and converting them to

n poses is required. Eq. (3.17) will be used to accomplish this objective.

For a m-pose, n-path synthesis problem, a task path described by a

trigonometric polynomial curve with an open interval is calculated and repre-

sented as

z(t) =

p∑
k=−p

Tke
ikωt ∀ t ∈ [0, tmax], tmax < 1, (3.18)

where z(t) = x(t) + iy(t) denotes the point coordinates in complex form at

time t, k are the frequency indices, Tk are the task curve Fourier descriptors,

ω is the angular velocity of crank, and [0, tmax] is the time interval over which

the curve is defined. The Tk can be calculated by least square minimization

of

∆ =
n∑
i=1

∥∥∥∥∥z(ti)−
p∑

k=−p

Tke
ikωti

∥∥∥∥∥
2

, (3.19)

where ∆ is the fitting error measure and z(ti) are the complex-valued point

data at time ti. Analytically solving the minimization problem gives a linear

system of equation as follows

ΩX = Y, (3.20)

where

X = [. . . , Tm, . . . ]
T

m→
, (3.21)
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Ω =


· · ·

...
∑n

i=0 e
i(k−m)θi

...

· · ·


k→

↓ m, (3.22)

Y = [. . . ,
n∑
i=0

z(ti)e
−imθi , . . . ]T

m→

. (3.23)

Here, k and m vary from −p to p which denote the column and row index of

an element in the matrix. Thus, X and Y are m-dimensional vectors while Ω is

a m×n dimensional matrix. LU decomposition can be used to solve the above

system. More details can be found in the work done by Wu et al. [24]. In [30],

we have proposed a method to calculate optimal time parametrization for task

curve for Fourier descriptor fitting of the path data. In our implementation,

task curves are represented using up to eleven descriptors i.e. p ∈ [−5, 5]. If

m + n < 11, we use a lesser number of descriptors to generate a unique task

curve.

The reasoning behind using a task curve with low higher order harmonic

content is supported in literature [11, 3], which says that the magnitude of

high harmonics for coupler path of a four-bar mechanism has an insignificant

impact. Thus, the fitted task path is a good prospective four-bar coupler curve

and the task curve descriptors Tk can be equated to coupler path descriptors

Pk.

The intention now is to find the MSP i.e. {z1, z2, z3} using available

orientation data and subsequently generate unknown orientations. We define

the system of equation given by Eq. (3.17) as fully constrained if all the MSP

can be calculated exactly. For a fully-constrained MSP computation problem,

three poses are required to calculate the MSP directly from Eq. (3.17). Phys-

ically, this condition makes perfect sense as the user might know orientations

at the initial position, final position and an additional intermediate location
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while a sequence of path points might be given in addition.

For under-constrained MSP computation problem, there are only one or

two poses given. As a result, additional constraints are required to uniquely

calculate the MSP. The MSP are dependent on four-bar mechanism parameters

according to Eqns. (3.13), (3.14), and (3.15). These equations can be used

to generate additional constraints which are called Mixed Constraints (MIC).

The three possible MIC are

(1) Specify coupler parameters i.e. {r, α, δ} → z1

(2) Specify actuating fixed pivot i.e. {x0, y0} → z2

(3) Specify scale of input link, orientation of fixed pivot line,

and initial angle i.e. {l2, θ1, φ0} → z3

Thus, if two poses are input by the user, one MIC is required to fully define the

system of equations in Eq. (3.17). If only one pose is specified by user, two MIC

are required to solve the problem. Two pose problem is fairly common when

only the first and last orientations are important, such as in pick-and-place

operations. The MIC also mirror practical user-specified constraints, such as

selection of the location of the fixed pivot where an actuator might be situated.

In another case, there might be a restriction on coupler link dimensions. Thus,

the MIC represent a set of practical design constraints.

It is important to note that a pure path synthesis problem cannot be

restructured into a motion synthesis problem without fully defining all three

MSP. However, constraining all MSP simultaneously makes the synthesis less

useful as most of the mechanism parameters are then fixed.

For over-constrained MSP computation problems, the number of poses

specified is more than three. In this case, a least square solution to Eq. (3.17)

can be calculated using complex Singular Value Decomposition (SVD). Real
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SVD solvers, which are more easily available, can also be used by reducing

the complex system of equation in Eq. (3.17) into an equivalent real system of

equation in accordance with [31]. The K1 formulation presented in [31] has

been used in our implementation. According to the formulation, a complex

system of equation

(A+ iB)(x+ iy) = b+ ic (3.24)

can be written as a real system of equation A −B

B A


 x

y

 =

 b

c

 (3.25)

Finding least square solution to this equivalent real system of equations gives

the solution to original complex problem and values of MSP can easily be

calculated in over-constrained cases.

Once the values of MSP z1, z2, z3 are calculated using m poses, orienta-

tions at n path points can be found out by simple matrix multiplication using

the system of equation in Eq. (3.17). As a result, n path points and m poses

are converted to m + n poses. The motion synthesis algorithm can now be

used to calculate dyads. A review of algebraic fitting based motion synthesis

algorithm is discussed in next section.

3.4 Motion synthesis algorithm

Now that the mixed synthesis problem has been reformulated as motion

synthesis problem, solution mechanisms can be achieved by calculating the

dyads. Algebraic fitting based motion synthesis algorithm [18, 19, 20, 21] has

been used in our implementation. In this approach, a planar four-bar linkage

is split open in two dyads and each dyad is computed independently thus

reducing significant computational burden. Moreover, this approach enables us

to carry out simultaneous type and dimensional synthesis of four-bar linkages,
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i.e. it takes into consideration the possibility of both revolute and prismatic

joints. Another benefit of the approach is its fast and efficient computation.

First, using kinematic mapping [32], each of the user-defined pose {x, y, ζ}

is mapped to quaternion space defined by a four-dimensional vector Z =

{Z1, Z2, Z3, Z4} called planar quaternions [33]. This space is also termed as

the Image Space of planar kinematics [32]. This mapping is defined by

Z1 =
1

2
(x cos

ζ

2
+ y sin

ζ

2
), (3.26)

Z2 =
1

2
(−x sin

ζ

2
+ y cos

ζ

2
), (3.27)

Z3 = sin
ζ

2
, (3.28)

Z4 = cos
ζ

2
. (3.29)

The geometric constraints of all types of dyads can be represented by a

single algebraic equation as following

q1(Z
2
1 + Z2

2) + q2(Z1Z3 − Z2Z4) + q3(Z2Z3 + Z1Z4)

+q4(Z1Z3 + Z2Z4) + q5(Z2Z3 − Z1Z4) + q6Z3Z4

+q7(Z
2
3 − Z2

4) + q8(Z
2
3 + Z2

4) = 0, (3.30)

where qi(i = 1, 2, ·, 8) are the homogeneous coefficients of the manifold surface

represented by the above equation. In [21], we call this as a generalized (G-)

manifold, which is capable of representing all types of mechanical dyads. For

every pose, one such linear equation with unknowns as qi is obtained. Assem-

bling all the G-manifold equations for all the poses results in the following

over-constrained homogeneous linear system on equation

Aq = 0, (3.31)

33



where

A =



A11 A12 A13 A14 · · · · · · · · · A18

A21 A22 A23 A24 · · · · · · · · · A28

...
...

...
...

...
...

...
...

An1 An2 An3 An4 · · · · · · · · · An8


, (3.32)

and

q =

[
q1 q2 · · · q8

]T
(3.33)

The elements of each row of the matrix A are given as

Ai1 = Z2
i1 + Z2

i2, (3.34)

Ai2 = Zi1Zi3 − Zi2Zi4, (3.35)

Ai3 = Zi2Zi3 + Zi1Zi4, (3.36)

Ai4 = Zi1Zi3 + Zi2Zi4, (3.37)

Ai5 = Zi2Zi3 − Zi1Zi4, (3.38)

Ai6 = Zi3Zi4, (3.39)

Ai7 = Z2
i3 − Z2

i4, (3.40)

Ai8 = Z2
i3 + Z2

i4, (3.41)

where i is the pose index ranging from i = (1, 2, · · · , n). The least square

solution to this homogeneous system of equation can be found out using the

singular value decomposition of the coefficient matrix A [34]. The right sin-

gular vectors corresponding to the smallest singular values are candidate so-

lutions for the minimization problem. The subspace spanned by the three

smallest singular value right-vectors represents a family of possible dyad so-

lutions. However, for these dyads to make physical sense, the following extra

constraints are required to be satisfied

q1q6 + q2q5 − q3q4 = 0

2q1q7 − q2q4 − q3q5 = 0 (3.42)
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An analytical solution to the above reduces to a quartic equation, which can

give zero, two, or four real dyad solutions. Complex solutions do not represent

a physical dyad. Combining any of the two dyads results in a four-bar mech-

anism. For further details, see [21]. As a result, the path synthesis problem

is solved and prospective solutions are generated. Using this motion synthesis

algorithm also enables us to simultaneously carry out type and dimensional

synthesis. However, that is not the focus of this work.

The above methodology for motion computation works for five or more

poses when the system of equation is fully-constrained or over-constrained.

To handle under-constrained cases, additional Motion Synthesis constraints

(MOC) also called geometric constraints outlined in [19] are used. We note that

the constraints being discussed here are the ones required to define the motion

computation problem, which are different from the constraints discussed earlier

in the context of MSP computation. We ensure that the context would make

it clear which constraints are being discussed.

3.5 Unified synthesis algorithm

A unified synthesis algorithm to solve the Alt-Burmester problems has

been summarized in Algorithm 2. It states that when the synthesis problem

has zero poses, the Fourier descriptor based path synthesis algorithm as de-

scribed by Wu et al. [24] is used. For all the other cases, mixed synthesis

approach using Eq. (3.17) can be used to solve for four-bar mechanisms. It

must be noted that except for the case where there are no poses, the synthesis

calculates both type and dimensions.

A key advantage of the methodology outlined is that it can handle mo-

tion, path and mixed synthesis problems seamlessly. Various permutations of

(0, 1, · · · ,m) poses and (0, 1, · · · , n) path point problems are presented in Ta-
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Algorithm 2: Algorithm for Unified Motion, Path and Mixed Syn-
thesis

Input: Path points and Poses
1 if n(Pose)=0 then
2 Calculate Tk using Eq.(3.19)
3 Calculate the four-bar mechanism by solving a minimization

problem in a four dimensional subspace as described by Wu et
al. [24]

4 else
5 Calculate Tk using Eq.(3.19)
6 Calculate MSP using Eq.(3.17)
7 Calculate the singular vectors using Eq.(3.31)
8 Calculate the dyads using Eq.(3.42)

9 end
Output: Synthesized mechanism
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ble 3.1. The legends in the table are MOC = Motion Synthesis constraint [19],

MIC = Mixed Synthesis Constraint, FD = Fully Defined, and X=trivial or

undefined. The * refers to conditions where a Fourier task curve with just

four points needs to be fitted and would have unsymmetrical descriptors.

Table 3.1: Various Possibilities for Unified Motion, Path, and Mixed Synthesis
Problem

Path Points
0 1 2 3 4 n

Poses

0 X X X X FD∗ FD
1 X X X 2 MIC∗ 2 MIC 2 MIC
2 X X 1 MIC∗ 1 MIC 1 MIC 1 MIC
3 2 MOC 1 MOC∗ FD FD FD FD
4 1 MOC FD FD FD FD FD
5 FD FD FD FD FD FD
m FD FD FD FD FD FD

Motion Synthesis constraints can be used to specify the position of fixed

or moving pivots using line or point constraints or any other compatible geo-

metric constraint; see [19] for details. Mixed Synthesis Constraints, described

earlier, involve constraints on actuating pivot, coupler dimensions, and other

mechanism parameters. Fully Defined entails that no extra constraints are

needed to exactly or least square solve the mixed synthesis Eq. (3.17). If either

one of the MSP computation problem or Motion synthesis problem is under-

constrained, the mixed synthesis problem is defined to be under-constrained.

These under-constrained cases in Table 3.1 require additional constraints to be

solved. In the table, zero-pose (or, pure-path synthesis) problems are solved

using Wu et al. [24]. In that case, when four or more path-points are spec-

ified, the problem is fully defined and is non-trivial; however for n = 4, we

can only calculate unsymmetrical descriptors. When only one pose is given,

then two MIC are required to calculate all the MSP; with two poses, one MIC

is required; and for three poses, no additional MIC are needed. However,
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for three poses, at least two path points need to be specified to obtain five

poses needed for the motion synthesis algorithm. Burmester [15] showed that

one needs five poses to solve a motion generation problem uniquely. In [18],

we have extended Burmester problem to show that one can specify not only

five poses, but a combination of pose and other geometric constraints to have

unique mechanism design solutions. Therefore, for one path-point with three

poses, we need one MOC and for zero path point, we need two MOC to get a

total of five constraints. However, zero path-point problem reduces to a pure

motion generation problem. We will illustrate some of these permutations and

combinations in the examples next.

3.6 Examples

In this section, we present some examples to illustrate the effectiveness

of the proposed algorithm. First example aims to validate the approach by

extracting path-points and poses from a known mechanism. Second example

solves mixed synthesis problem with fully-constrained MSP computation in-

volving three poses and five path points. Third and fourth examples deal with

under-constraint MSP computation and motion synthesis cases and require

additional mixed- and motion-constraints, respectively. Demonstrating valid

results from each of these cases proves the robustness of proposed algorithm.

It also demonstrates the flexibility of the algorithm and its ability to incorpo-

rate various constraints. In the Figures 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8, the blue

and red curves denote the coupler curve in two possible assembly modes.

3.6.1 Example 1: Reverse Engineering a Mechanism

To validate the proposed mixed synthesis algorithm, points and poses

from a known planar four-bar mechanism are taken and then our algorithm is
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used to synthesize mechanisms. Ideally, we should get the exact same mecha-

nism. However, a similar mechanism is also acceptable since approximations

occur at various steps – from task curve generation to algebraic fitting of the

pose data.

A sample mechanism displayed in Fig. 3.3 is used to generate seven path-

points and five poses. The mechanism has been defined using the position of

its fixed pivots, moving pivots and coupler coordinates as shown in Table 3.2.

Figure 3.3: Example 1: Known target mechanism

Table 3.2: Example 1: Sample mechanism design parameters as shown in
Fig. 3.3

Point X Y
Input link fixed pivot −3.0 0.0

Input link moving pivot −2.0 1.0
Output link fixed pivot 2.0 1.0

Output link moving pivot −1.0 4.0
Coupler point 1.0 −1.0

The arbitrarily sampled poses and path points are listed in Table 3.3.

This is a fully defined problem and all the MIC can be computed without

39



requiring any additional information. These constraints are used as input

to mixed synthesis algorithm. Four solution dyads are output as listed in

Table 3.4. This also allows us to reverse-engineer a known mechanism since

there are six planar four-bars that can satisfy the given constraints. Figure 3.4

shows a four-bar obtained by assembling dyads 1 and 4. It is observed that

the mechanism generated is very similar to the original mechanism. This

approximate result is due to the best-fitted low harmonic task curve following

the original coupler curve closely but not exactly. The average path error

measured by calculating the deviation of input points from final path using

the Euclidean distance is 0.0694 units for the displayed configuration. The

maximum angular deviation among all the given poses is for the pose 3 as

0.0736 rad.

Table 3.3: Example 1: Input data

No. Type of Data x y ζ (rad)
1 Point 0.350 −1.160
2 Point −0.410 −1.340
3 Pose −1.585 −1.737 5.853
4 Point −2.110 −2.030
5 Point −2.800 −2.970
6 Pose −2.216 −3.665 5.896
7 Point −0.420 −3.500
8 Point 0.910 −2.580
9 Pose 1.520 −1.832 0.351
10 Pose 1.912 −1.036 0.385
11 Point 1.560 −0.860
12 Pose 1.000 −1.000 0.000

Table 3.4: Example 1: Output dyad data

Dyad Fixed Pivot Moving Pivot Coupler Point
1 −2.793,−0.554 −2.056, 0.799 0.350,−1.160
2 −0.172, 6.978 1.340, 8.356 0.350,−1.160
3 −18.181, 11.280 −4.226, 6.257 0.350,−1.160
4 1.625, 0.824 0.081, 3.477 0.350,−1.160
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Figure 3.4: Example 1: Mechanism generated using mixed synthesis algorithm

In this example, the input data consisted of five poses and seven path

points. Greater than three input poses over-constraints the MSP computa-

tion due to which the path-orientation relationship is satisfied using SVD.

Thus, this example demonstrates mixed synthesis with over-constrained MSP

computation.

3.6.2 Example 2: Mixed synthesis with fully-constrained MSP

computation

In this example, the input data consists of three poses and five path

points which fully constrains the MSP computation problem. The data input

to mixed synthesis algorithm is given in Table 3.5. The two dyads generated as

output have been shown in Table 3.6. The final mechanism has been displayed

in Fig 3.5. It can be observed that a good match has been established with the

constraints. Average path error is 0.0226 units while the maximum angular

deviation for poses is 0.0106 rad for second pose. Note that in this case, the

path-orientation relationship has an exact solution, i.e. MSP are uniquely
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determined using SVD.

Table 3.5: Example 2: Input data

No. Type of Data x y ζ (rad)
1 Pose −5.263 1.441 0.161
2 Point −3.810 1.690
3 Point −2.890 1.590
4 Point −2.010 1.120
5 Pose −1.416 0.789 5.919
6 Point −0.200 0.490
7 Point 1.040 0.600
8 Pose 2.206 1.203 0.405

Figure 3.5: Example 2: Mixed synthesis with fully-constrained MSP compu-
tation for three poses and five path points

Table 3.6: Example 2: Output dyad data

Dyad Fixed Pivot Moving Pivot Coupler Point
1 0.771, 3.424 −2.927, 0.266 −5.263, 1.441
2 −3.931,−2.151 −6.160, 6.975 −5.263, 1.441

One of the major advantages of mixed synthesis is the additional flexibil-

ity it imparts to users while specifying inputs and generating good solutions.
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Using a pure motion synthesis algorithm, the user would have to input all the

data as poses even if the problem demanded otherwise. This would lead to an

over-constrained motion problem, which when solved using existing kinematic

mapping based algebraic fitting approach [18, 19, 20, 21] usually produces poor

solutions. A comparable motion synthesis problem for the same path points,

but with orientations also given is displayed in Fig 3.6. It can be observed that

the solution provides a poor fit to the given constraints. This happens because

the orientation provided are not compatible with the motion of coupler of the

planar-four linkages.

Figure 3.6: Example 2: Over-constrained motion synthesis for eight poses
produces a poor solution.

3.6.3 Example 3: Mixed synthesis with under-constrained MSP

computation using mixed constraints

This example shows mixed synthesis with under-constrained MSP com-

putation problem where two poses and four path points are specified in the

input. Lesser than three input poses makes MSP computation problem under-

constrained. To solve for MSP, an additional mixed constraint is required

which could specify any of z1, z2, z3. The constraint data input to mixed syn-
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thesis algorithm is shown in Table 3.7. A MIC is used to specify z2 by defining

the preferred location of a fixed joint at point (1, 3). The four dyads generated

as output are shown in Table 3.8. One of the final mechanisms is displayed in

Fig 3.7 using dyads 3 and 4. It can be observed that the generated mechanism

closely satisfies path and mixed constraints. The average path error is 0.0948

units while the maximum angular deviation for poses is 0.0389 rad for the

second pose in the displayed mechanism. Note that in this case, the path-

orientation relationship has an infinite solutions and the use of MIC restricts

the solution space to a unique solution to the MSP.

Table 3.7: Example 3: Input data

No. Type of Data x y ζ (rad)
1 Pose 4.962 −0.514 0.134
2 Point 3.850 −1.480
3 Point 1.920 −0.740
4 Point 0.850 0.760
5 Point 3.360 1.650
6 Pose 4.900 1.178 0.510

Table 3.8: Example 3: Output dyad data

Dyad Fixed Pivot Moving Pivot Coupler Point
1 8.705, 10.738 8.705, 10.738 4.962,−0.514
2 −7.961, 8.082 −3.450, 6.381 4.962,−0.514
3 0.973, 3.179 1.004,−0.295 4.962,−0.514
4 4.748, 0.792 6.635,−0.004 4.962,−0.514

3.6.4 Example 4: Mixed synthesis with under-constrained mo-

tion synthesis using motion constraints

This example shows mixed synthesis with under-constrained motion syn-

thesis problem where three poses and one path point is specified in the input.

Motion synthesis is under-constraint because the total pose and path con-
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Figure 3.7: Example 3: Under-constrained mixed synthesis for two poses and
four path points using additional mixed constraint

straints are just four. Even though three poses specified can be used to calcu-

late the MSP, an additional motion constraint is required to solve the motion

synthesis problem. The data input to mixed synthesis algorithm is given in

Table 3.9. A line constraint is used as MOC in the example presented. The

line segment is defined by its end points (−4, 1) and (1, 4). The four dyads

generated as output are shown in Table 3.10. One of the final mechanisms is

displayed in Fig 3.8 using dyads 1 and 2. It can be observed that the gen-

erated mechanism closely satisfies path constraints. The average path error

is 0.0026 units while the maximum angular deviation for poses is 0.0005 rad

for second pose in the displayed mechanism. Also, both the fixed pivots fall

on the line constraint specified. Thus, the synthesis problem is successfully

solved. Note that in this case, it is not the path-orientation relationship that

is under-defined but the algebraic fitting algorithm which requires at-least five

poses to be fully defined.
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Table 3.9: Example 4: Input data

No. Type of Data x y ζ (rad)
1 Pose −2.018 −1.391 0.146
2 Pose 0.288 −1.115 0.287
3 Point 1.700 0.360
4 Pose 2.895 1.253 1.487

Figure 3.8: Example 4: Under-constrained mixed synthesis for three poses and
one path points using additional motion constraint

Table 3.10: Example 4: Output dyad data

Dyad Fixed Pivot Moving Pivot Coupler Point
1 0.647, 3.788 0.058, 2.651 −2.018,−1.391
2 −1.181, 2.692 −2.002, 1.708 −2.018,−1.391
3 −3.322, 1.407 −4.111, 3.061 −2.018,−1.391
4 −3.322, 1.407 −4.111, 3.061 −2.018,−1.391
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3.7 Conclusion

In this chapter, we have presented a generalized m pose, n path-point

mixed synthesis approach for four-bar mechanisms. Original contributions of

this chapter include the closed-form relationship between coupler orientation

and coupler path and exploiting this relationship to present a novel framework

for solving the mixed synthesis problem. Another novel feature is the use

of task-driven motion synthesis algorithm within the framework to keep the

computation cost at minimum and perform simultaneous type and dimensional

synthesis. A few examples were presented to demonstrate the effectiveness of

the approach.

47



Chapter 4

Using a Point-Line-Plane Representation for Unified Simulation of

Planar, Spherical, and Spatial Mechanisms

4.1 Introduction

Kinematic simulation of a mechanism requires calculation of the position

and orientation of all of its constituent links during its entire range of mo-

tion. Simulation methodologies can be broadly classified into three categories:

graphical, analytical and numerical [35]. The graphical analysis method is

based on dyadic decomposition, i.e., identification of four-bar loops in mecha-

nisms [36]. Although this approach is prominently used in simulation packages

like Linkages [37] and PMKS [38], its limitations are well known [39]; e.g., they

are unable to handle complex mechanisms like a double butterfly mechanism.

Analytical methods involve solving a loop closure constraint-based system of

non-linear equations [40]. Most analytical methods use the Polynomial contin-

uation method [41, 42], elimination method or Grobner bases [43] to solve the

simulation problem. These methods are able to find all the possible assembly

configurations of a given mechanism. However, they are not general in nature

since the motion equations need to be derived for each type of mechanism sep-

arately. As a result, these approaches cannot be used to simulate n-bar planar

or spherical mechanisms without manually deriving equations on a case by

case basis.

Numerical simulation methods are iterative in nature and can handle
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extremely complex mechanism [44, 45]. They use numerical methods like

the Newton-Raphson method to solve the system of non-linear equations for

one solution only instead of all possible ones [46]. These methods accept the

mechanism joints and link information as inputs. Subsequently, the algorithm

repeatedly solves the finite displacement problem, i.e., the input link is itera-

tively moved with finite displacement and consequently, positions of remaining

links are calculated. As a result, the entire range of motion for the specified

mechanism is calculated.

Hernández and Petuya have proposed a geometrical-iterative method

which performs better than Newton-Rhapson method [47]. However, the ap-

proach is limited to n-bar planar mechanism with revolute joints only. Rad-

hakrishnan and Campbell [48] have created a computational tool for planar

mechanism, which carries out position analysis of planar mechanisms using a

geometrically iterative algorithm. However, due to the use of dyadic decom-

position, it shares the limitations of graphical methods and is limited to the

planar mechanisms.

Commercial CAD software like Autodesk Inventor, Solidworks, ADAMS,

etc. solve differential-algebraic equations numerically to provide multi-body

simulation capability [49, 50, 51, 52]. However, their use is more prominent

during detail design stage rather than the conceptual design stage. Creation

of feature-based assembly of planar and spherical mechanisms and initializing

constraints on these systems is a nontrivial task. Changing the type of joints

or the number of links for a mechanism is also more involved than carrying out

the same operation on purely kinematic simulators like PMKS [38]. Addition-

ally, their solvers model the motion problem as a set of coupled differential and

algebraic equations. This type of model is more suited for dynamic simulations

rather than kinematic simulations, which involves purely algebraic constraints.
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Also, the algebraic equations for commercial softwares are modeled using ref-

erence point representation which leads to more number of constraints when

compared to other representations. Thus, use of these softwares for concept

design is not ideal. SAM and GIM are two more packages which supports n-bar

simulation for planar linkages with both revolute and prismatic joints [53, 54].

Furlong et al. [55] have demonstrated a virtual reality environment for simulat-

ing spherical four-bar mechanisms and in the academic domain, SPHINX, ISIS

and OSIRIS are softwares which enable the analysis and synthesis of spherical

mechanisms [56, 57, 58].

However, currently there are no approaches which unify n-bar planar

and spherical mechanism analysis and can be demonstrated to more complex

linkage systems. The proposed approach hopes to bridge this gap and augment

the capability of pure kinematic design systems like MotionGen [18]. In this

chapter, planar-and spherical-mechanisms are represented as a collection of

geometric constraints spanned by points, lines, and planes. The geometric

mechanism representation enables the design of unified constraint equations

which are easily programmed. As a result, a simple generalized real-time

framework for mechanism simulation is achieved.

Our previous work on mechanism synthesis problems includes the cre-

ation of geometric constraint equations for four-bar mechanisms with revolute

or prismatic joints [21, 59, 60, 61, 62]. In [63], we have demonstrated an

algebraic fitting based approach in the space of planar quaternions to simu-

late planar four-bar linkages. However, that approach does not scale for more

complex planar or spherical linkages. In this chapter, we show that by using

homogeneous coordinates, we can derive unified geometric constraint equations

for both planar and spherical linkages, which simplifies the simulation with-

out resorting to calculations for individual types of mechanisms. The rigidity
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constraints imposed by the links are modeled as simple geometric constraints

using points, lines and planes. Once the mechanism is specified, the solver

proceeds with iteratively perturbing the input and solving the constraints for

other links. To the best of authors’ knowledge, this work is the first attempt

at using a point-line-plane mechanism representation and presenting unified

geometric constraints for simulation.

The major intellectual contributions of this chapter can be summarized

as 1) presenting generalized constraint equations for planar and spherical

mechanisms using point-line-plane representation and 2) enabling real-time

simulation of n-bar planar or spherical mechanisms.

Rest of the chapter is organized as follows. Section 4.2 discusses the rep-

resentation and constraints required to describe the motion of a general planar

and spherical mechanism. Section 4.3 demonstrates the algorithm required

to simulate a mechanism using the iterative numerical approach. Finally, in

Section 4.4, we present a few examples to demonstrate the use of proposed

algorithm.

4.2 Mechanism Representation and Constraints

Figure 4.1: Different types of mechanism representations

Selection of an apt mechanism representation and constraints is impor-

tant as it has a profound effect on algorithm’s simplicity and efficiency. Con-

ventionally, a multi-body system has been specified using multiple represen-
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tations namely: relative coordinates, reference point coordinates, and natural

coordinates [44]. Relative coordinates are based on parameters specifying one

link relative to another; reference point coordinates are based on specifying

absolute position of each link independently; while the natural coordinates

are based on each link being specified by two points. Using relative coordi-

nates enables a scalable representation while reference point coordinates tend

to be more computationally efficient. Natural coordinates provide a compro-

mise between the two approaches in terms of simplicity and efficiency. Most

commercial softwares use reference point coordinate representation which usu-

ally leads to maximum number of constraint equations and subsequently high

computation time.

Figure 4.1 shows an RRPR (R: Revolute, P: Prismatic) four-bar mech-

anism and its specification using different representations. For the relative

coordinate representation, there are three unknown coordinates i.e. ψ1, ψ2, L3.

For the reference point coordinate representation, the mechanism has nine un-

known variables i.e. location and orientation of each link xi, yi, ψi. Similarly,

for the natural coordinate representation, there are six unknown variables

namely x1, y1, x2, y2, x3, y3. Since the four-bar mechanisms are a single degree

of freedom mechanisms, each of the representation requires two, eight and five

constraint equations, respectively to fully define the motion. In this chap-

ter, we derive unified constraint equations for all types of planar and spherical

linkages consisting of both revolute and prismatic joints. We use homogeneous

coordinates to write geometric constraints on points, lines, and planes. For

example, our representation for the shown RRPR mechanism will require us-

ing four unknown point and line coordinates i.e. x1, y1, a2, b2 since we can set

homogenizing factors z1 = 1 and c2 = 1 without any loss in generality. Such a

representation would keep the number of unknown variables smaller while also
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enabling construction of simpler geometric constraint equations. Computa-

tional efficiency aside, this representation also naturally maps to the geometric

constraints, which for the shown RRPR mechanism are a circle-constraint on

the moving pivot and a line-constraint on the fixed pivot of the RP dyad. It

is well known that the time complexity of multidimensional Newton-Raphson

method, which is used in this chapter, is at-least O(n2) for a single iteration

where n is the number of unknowns in state variable [45]. This is a direct

consequence of a dense Jacobian matrix having n2 elements that need to be

calculated after every iteration. Thus, more unknowns result in needing to

calculate larger Jacobian matrices which is computationally expensive.

Planar mechanisms can be uniquely specified using their joint and link

data. A joint can be prismatic or revolute, which naturally associates with

points and lines, respectively. We use homogeneous coordinates to represent

both points and lines. Thus, a point P is given by homogeneous coordinates

(x, y, z) whose Affine coordinates are given as (x/z, y/z), while a line L is also

represented using homogeneous coordinates (a, b, c), where equation of the line

passing through the point P in the projective plane is given by ax+by+cz = 0 .

Depending on the constraint being expressed, this line can be fixed or floating

in the plane. A link can be represented by a subset of joints. The link can

be binary, ternary or n-ary depending on the number of joints it contains.

An example six-bar planar mechanism is displayed in Fig. 4.2. Its joints are

represented as points and lines while its links are defined as a group of joints

as shown in Table 4.1.

Similarly, spherical mechanisms can also consist of revolute and pris-

matic joints. A spherical prismatic joint constrains the link movement along

a circular arc instead of a line. We represent a spherical revolute joint as a

point P in terms of its homogeneous coordinates (x, y, z, w) with respect to the
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Figure 4.2: Planar Stephenson II six-bar linkage

center of the unit sphere such that its Affine coordinates are (x/w, y/w, z/w).

A spherical prismatic joint is defined as a plane Pl : (a, b, c, 0) passing through

the center of the sphere and is given by the equation ax + by + cz = 0. The

intersection of the plane and the unit sphere defines the great circle along

which the constituent links are constrained to move for a spherical prismatic

joint. Similar to the lines for planar mechanisms, this plane can be fixed or

moving depending on the geometric constraint being expressed. An example

RRPR spherical mechanism is displayed in Fig. 4.3. Its joints are represented

as points and planes while its links are defined as a group of joints as shown

in Table 4.2.

During the motion, a mechanism is subjected to a set of constraints

imposed by the rigidity of its links. Thus, to simulate a mechanism, these

constraint equations need to be formulated. For planar and spherical mech-

anisms, modeling three constraint equations are sufficient for simulation. We

propose a unique constraint equation for each of the binary links RR, RP, PR,

and PP. But, we will see that all of these constraints can be expressed in a

single equation. Any link with more than two joints can easily be reduced to
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Table 4.1: Joint and Link data for Stephenson II linkage using Affine Coordi-
nates

Joint Type Coordinates
J1,input Revolute 0, -1
J2 Revolute 1, .5
J3 Prismatic -0.17, 0.98, -4.28
J4 Revolute 3.25, 1.4
J5 Revolute 7.72, 1.44
J6 Revolute 11.66, 4.17
J7 Prismatic 0, 1, 1.24
J8 Coupler point 6, -2

Link Constituent joints
L1 J1, J2
L2 J2, J3, J4
L3 J3, J6
L4 J4, J5, J8
L5 J5, J6, J7

L6,ground J1, J7

Figure 4.3: Spherical RRPR four-bar linkage

an equivalent collection of binary links. For example, a ternary link can be

treated as three binary links. Thus, these constraints can successfully be used

to enforce the rigidity of any link in a general mechanism. Figures 4.4 and 4.5

show different planar and spherical binary links, which are building blocks for

any planar and spherical mechanism and are discussed below.

The first general constraint enforces the rigidity of a spherical binary
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Table 4.2: Joint and Link data for Spherical RRPR linkage using Affine Coor-
dinates; the coordinates are given with respect to the fixed coordinate frame
located at the center of the reference sphere.

Joint Type Coordinates
J1,input Revolute 0.94, 0.24, 0.24
J2 Revolute 0.80, 0.27, 0.53
J3 Prismatic 0.68, -0.68, 0.26
J4 Revolute -0.38, 0.76, 0.53
J5 Coupler point 0.50, -0.21, 0.84

Link Constituent joints
L1 J1, J2
L2 J2, J3, J5
L3 J3, J4

L4,ground J1, J4

Figure 4.4: Types of binary planar links

Figure 4.5: Types of binary spherical links

link with two revolute joints represented by two homogeneous point coordi-

nates of the fixed point (a1, a2, a3, a4) and floating point (b1, b2, b3, b4), where

a4 and b4 are homogenizing factors. The RR link imposes the constraint that

the distance between two points remains constant, i.e., dist(R1, R2) = r in
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Figures 4.4 and 4.5. The constraint equation is given as

CS,RR : 2a1b1 + 2a2b2 + 2a3b3 + a0b4 =

a4

(
b21 + b22 + b23

b4

)
,

(4.1)

where a0 is given as

a0 = a4r
2 − a21 + a22 + a23

a4
. (4.2)

Here, r is the radius of the sphere formed by the RR link with the center given

by (a1, a2, a3, a4). When the z-coordinate is set to zero, the constraint equation

degenerates into the one for a planar RR link. The constraint equation for a

planar RR link represented by points (a1, a2, a4) and (b1, b2, b4) is thus given

as

CP,RR : 2a1b1 + 2a2b2 + a0b4 = a4

(
b21 + b22
b4

)
, (4.3)

where a0 is given as

a0 = a4r
2 − a21 + a22

a4
. (4.4)

The second general constraint enforces the rigidity of a binary link with one

prismatic and one revolute joint represented by a homogeneous point and a

plane given by (a1, a2, a3, a4) and (L1, L2, L3, L4), respectively. An RP or PR

link imposes the constraint that the distance between a point and a line (planar

case) or a point and a plane (spherical case) is constant, i.e., dist(R,P ) = d

in Figures 4.4 and 4.5. RP and PR links are inversions of each other and

are expressed by the same constraint. The general constraint equation for a

spherical RP link is given as

CS,RP : a1L1 + a2L2 + a3L3 + a4L4 = da4

√
L2
1 + L2

2 + L2
3, (4.5)

where d is the signed perpendicular distance between the revolute joint and

prismatic joint. For spherical linkages, the prismatic plane always passes
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through the origin, i.e. L4 = 0. Thus, the spherical RP link constraint equa-

tion reduces to

CS,RP : a1L1 + a2L2 + a3L3 = da4

√
L2
1 + L2

2 + L2
3. (4.6)

When the z-coordinates is set to zero, the general constraint equation degen-

erates into a planar case. Thus, constraint equation for a planar RP or PR

link represented by a point (a1, a2, a4) and a line (L1, L2, L4) is given as

CP,RP : a1L1 + a2L2 + a4L4 = da4

√
L2
1 + L2

2. (4.7)

When the perpendicular distance d becomes zero, the equation describes a line

passing through a point, i.e. constraint equation of PR or RP links. This is

usually the case with the PR links where the moving joint point is constrained

to be on the fixed line of the prismatic joint and in case of the RP link where

the moving line is constrained to pass through the point of the fixed joint.

Finally, the third constraint enforces the rigidity of a spherical binary link

with two prismatic joints represented as (L1, L2, L3, 0) and (M1,M2,M3, 0).

For the PP link, the angle between two lines (planar case) or two planes

(spherical case) remains constant, i.e., angle(P1, P2) = cos−1(k) in Figures 4.4

and 4.5.The constraint equation is given as

CS,PP : L1M1 + L2M2 + L3M3 = k
√
L2
1 + L2

2 + L2
3

√
M2

1 +M2
2 +M2

3 , (4.8)

where k represents the cosine of angle between two prismatic joints. Sim-

ilarly, for planar PP binary link represented by two lines (L1, L2, L4) and

(M1,M2,M4), the constraint equation degenerates to

CP,PP : L1M1 + L2M2 = k
√
L2
1 + L2

2

√
M2

1 +M2
2 . (4.9)

When the two prismatic joints on a binary link are defined as two parallel lines,

a degree of freedom is added to the mechanism. This situation is impractical

and will not been considered further in this chapter.
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It can be seen that the Eqns. 4.3, 4.6, 4.7, 4.8, 4.9 are all degenerate case

of the Eq. 4.1. In the projective plane for the planar geometric constraints,

the lines and points are dual to each other; thus, their meanings can be in-

terchanged without changing the underlying structure of the equations. In

the projective three-space for the spherical constraints, the points and planes

are dual to each other and thus their meanings can be interchanged. Thus,

the Eq. 4.1 is the single equation that unifies all the geometric constraints

associated with all types of links for both planar and spherical mechanisms.

This facilitates creation of the following metrics for computation: 1) distance

between two points in space, 2) perpendicular distance between a point and a

plane, and 3) angle between two planes.

For links with prismatic joints, the line or plane coordinates are homoge-

neous in nature, i.e. multiplying a non-zero scalar λ to prismatic coordinates

(L1, L2, L3) does not change the coordinates. Thus, the magnitude of this vec-

tor can be fixed to unity without losing generality and another constraint can

be written as

CP : L2
1 + L2

2 + L2
3 − 1 = 0. (4.10)

For spherical mechanisms, an additional geometric constraint is imposed on

the joints due to the spherical nature of the motion. It is assumed that all the

revolute joints move on the unit sphere which leads to the constraint

CS,R : a21 + a22 + a23 − 1 = 0, (4.11)

where (a1, a2, a3) are the coordinates of any revolute joint on a spherical mecha-

nism. Thus, the rigidity constraints described in Eqs. (4.1), (4.3), (4.6), (4.7), (4.8), (4.9), (4.10)

and (4.11) are sufficient to uniquely determine the unknown coordinates of a

n-bar planar or spherical mechanism. This concludes our discussion on repre-

sentation and constraints for a generalized planar or spherical mechanism.
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4.3 Solving Constraint Equations

In this section, we discuss the algorithmic steps required to solve the

kinematic simulation problem. The general approach is to iteratively per-

turb the input links by a finite displacement and find the new position of the

mechanism.

4.3.1 Input link perturbation

The simulation process involves iteratively perturbing the input link by

a finite displacement. Depending on the actuating joint being revolute or

prismatic, the displacement could be translation or rotational in nature. In

this chapter, we restrict ourselves to consider actuation at the fixed joints. The

relations governing the motion of input link are derived in this subsection.

For a perturbed RR link with the actuating fixed joint (x1, y1) and mov-

ing joint (x2, y2), the new coordinates of moving revolute joint can be given as


X2

Y2

1

 = [T]−1[R][T]


x2

y2

1

 , (4.12)

where

[Rx] =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 , and [T] =


1 0 −x1

0 1 −y1

0 0 1

 . (4.13)

In the above equation, (X2, Y2) represent the moving joint after perturbation

and θ is the angle through which the input link is perturbed.

For a perturbed RP link with the actuating fixed joint (x1, y1) and mov-

ing joint (a, b, c), the new coordinates of moving line representing the prismatic
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joint can be given as 
A

B

C

 = ([T]−1[R][T])−T


a

b

c

 , (4.14)

where (A,B,C) are the moving line coordinates after perturbation, and T and

Rx are the translation and rotation matrices as described in Eqs. (4.13).

For a planar mechanism with the actuation being at prismatic joint,

input link perturbation causes translation of other joints on the input link.

For a perturbed PR link with the actuating joint (a, b, c) and moving joint

(x, y), the new coordinates of translating revolute joint can be given as
X

Y

1

 =


b√

a2+b2
d

−a√
a2+b2

d

0

+


x

y

1

 , (4.15)

where (X, Y ) are the moving joint coordinates after perturbation and d is the

distance through which the prismatic joint is moved along the fixed line. It

can be seen that in Eq. (4.15) the actuating line coordinate c doesn’t effect

the new position of moving joint coordinates as new position only depends on

direction cosines.

For a perturbed PP link with the actuating fixed joint (a1, b1, c1) and

moving joint (a2, b2, c2), the new coordinates of translating prismatic joint can

be given as 
A2

B2

C2

 =


0

0

a1b2−a2b1√
a21+b

2
1

d

+


a2

b2

c2

 (4.16)

where (A2, B2, C2) are the moving prismatic joint coordinates after perturba-

tion and d is the distance through which the input link has been perturbed.

Similarly, relationships determining the values of perturbed joints for

spherical mechanisms can also be calculated. For spherical mechanisms with a
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fixed revolute actuating joint, the moving joints rotate around the axis passing

through the actuation joint and the centre of sphere. The transformation

matrix which rotates spherical link around an axis passing through the centre

of sphere (0, 0, 0) and an arbitrary point on surface of the sphere (l,m, n) is

given by

[R](l,m,n) = [Rx]−1[Ry]−1[Rz][Ry][Rx] (4.17)

[Rx] =


1 0 0

0 n√
m2+n2

−m√
m2+n2

0 m√
m2+n2

n√
m2+n2

 (4.18)

[Ry] =


√
m2 + n2 0 −l

0 1 0

l 0
√
m2 + n2

 (4.19)

[Rz] =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (4.20)

where Rx, Ry, Rz are the rotation matrix around x,y and z axis and θ is the

angle by which the link is rotated around the axis.

Using Eq. (4.17), the new coordinates of the moving joints of a perturbed

spherical RR link can be given as
X2

Y2

Z2

 = [R](x1,y1,z1)


x2

y2

z2

 (4.21)

where (x1, y1, z1) are the fixed joint coordinates, (x2, y2, z2) are the moving

joint coordinates before perturbation and (X2, Y2, Z2) are the moving joint

coordinates after perturbation.

For a spherical RP link with a fixed revolute joint, the coordinates of
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moving prismatic joint can be given as
A

B

C

 = [R](x,y,z)


a

b

c

 (4.22)

where (x, y, z) are the fixed joint coordinates, (a, b, c) are the moving joint

coordinates before perturbation, (A,B,C) are the moving joint coordinates

after perturbation, and as described above.

When the actuation joint is prismatic in nature, the moving joints trans-

late on the intersection of a parallel plane and the unit sphere. This motion

can also be characterized as rotation around an axis which passes through the

centre of the sphere and ’pole’ of the prismatic joint. The poles of a great circle

are defined as intersection of two circles perpendicular to the initial circle. If

a spherical prismatic joint is defined as a plane (a, b, c), its pole coordinates

are also given as (a, b, c). Thus, for a spherical RP link with fixed prismatic

joint, the coordinates of moving revolute joint can be given as rotation i.e.
X

Y

Z

 = [R](a,b,c)


x

y

z

 (4.23)

where (a, b, c) are the fixed prismatic joint coordinates, (x, y, z) are the moving

revolute joint coordinates before perturbation and (X, Y, Z) are the moving

revolute joint coordinates after perturbation.

For a spherical PP link with a fixed prismatic joint, the coordinates of a

moving prismatic joint can be given as
A2

B2

C2

 = [R](a1,b1,c1)


a2

b2

c2

 (4.24)
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where (a1, b1, c1) are the coordinates of fixed prismatic joint, (a2, b2, c2) are

moving prismatic joint coordinates before perturbation and (A2, B2, C2) are

moving prismatic joint coordinates after perturbation.

With these expressions, we can successfully calculate the location of input

link after imparting it a discrete perturbation. The next step is to find the

coordinates of all the other unknown joint coordinates which are compatible

with the rigidity constraints imposed on the mechanism during simulation.

4.3.2 Numerical nonlinear system of equation solving

For any multi-body system, the position problem is always based on solv-

ing a system of constraint equations. This set of equations can be represented

as

Φ(q) = 0 (4.25)

where q is the state vector which consists of all the unknown coordinates. The

well-known Newton-Raphson method can be used to solve this nonlinear sys-

tem of equation. It is featured by quadratic convergence in the neighborhood

of the solution. Since the input link is perturbed by a small finite displacement,

the previous state of mechanism serves as a good initial approximation. The

number of constraint equations should be equal to or greater than the number

of unknowns for this approach to work. For planar and spherical mechanisms,

it is always possible to satisfy this criterion using the constraints outlined in

section.

The iterative algorithm followed can be defined as

qi+1 = qi − [J−1(qi)]Φ(qi) (4.26)

where qi is the state vector at ith iteration, Φ(qi) is the vector of residuals at

q = qi, and [J−1(qi)] is the inverse of Jacobian matrix evaluated at q = qi.
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The Jacobian matrix is of the following form

[J(q)] =



∂φ1
∂q1

∂φ1
∂q2

· · · ∂φ1
∂qn

∂φ2
∂q1

∂φ2
∂q2

· · · ∂φ2
∂qn

· · · · · · · · · · · ·
∂φm
∂q1

∂φm
∂q2

· · · ∂φm
∂qn


(4.27)

where m is the number of constraints and n is the number of unknown coor-

dinates. Thus to calculate the Jacobian matrix, relations describing the first

order partial derivatives of constraint equations are required.

The first order partial derivatives for spherical RR constraint given in

Eq. (4.1) can be given as follows

∂CRR
∂a1

= 2(a1 − b1) (4.28)

∂CRR
∂a2

= 2(a2 − b2) (4.29)

∂CRR
∂a3

= 2(a3 − b3) (4.30)

Here, the homogeneous point coordinate a0 and b4 has been assumed as unity

without loss in generality. For planar RR link, only ∂CRR

∂a1
and ∂CRR

∂a2
exists.

The first order partial derivatives for spherical RP constraint given in

Eq. (4.6) can be given as follows

∂CS,RP
∂a1

= L1,
∂CS,RP
∂a2

= L2,
∂CS,RP
∂a3

= L3 (4.31)

∂CS,RP
∂L1

= a1 −
dL1√

L2
1 + L2

2 + L2
3

(4.32)

∂CS,RP
∂L2

= a2 −
dL2√

L2
1 + L2

2 + L2
3

(4.33)

∂CS,RP
∂L3

= a3 −
dL3√

L2
1 + L2

2 + L2
3

(4.34)

Here, the homogeneous point coordinate a0 has been assumed as unity without

loss in generality. For planar RR constraint given in Eq. (4.7), the first order
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differentials are

∂CP,RP
∂a1

= L1,
∂CP,RP
∂a2

= L2, (4.35)

∂CP,RP
∂L1

= a1 −
dL1√
L2
1 + L2

2

, (4.36)

∂CP,RP
∂L2

= a2 −
dL2√
L2
1 + L2

2

, (4.37)

∂CP,RP
∂L4

= 1 (4.38)

The first order partial derivatives for spherical PP constraint given in

Eq. (4.8) can be given as follows

∂CS,PP
∂L1

= M1 −
kL1

√
M2

1 +M2
2 +M2

3

L2
1 + L2

2 + L2
3

(4.39)

∂CS,PP
∂L2

= M2 −
kL2

√
M2

1 +M2
2 +M2

3

L2
1 + L2

2 + L2
3

(4.40)

∂CS,PP
∂L3

= M3 −
kL3

√
M2

1 +M2
2 +M2

3

L2
1 + L2

2 + L2
3

(4.41)

These equations degenerate to planar case when L3 = 0 and M3 = 0 and

∂CP,PP

∂L4
= 0

The first order partial derivatives for homogeneous Prismatic joint con-

straint given in Eq. (4.10) can be given as follows

∂CP
∂L1

= 2L1,
∂CP
∂L2

= 2L2,
∂CP
∂L3

= 2L3 (4.42)

The first order partial derivatives for unit circle revolute joint constraint

given in Eq. (4.11) can be given as follows

∂CS,R
∂a1

= 2a1,
∂CS,R
∂a2

= 2a2,
∂CS,R
∂a3

= 2a3 (4.43)

To automate the calculation of residual vector Φ(qi) and the Jacobian

matrix [J(qi)], the constraints are handled in a sequential manner. While

creating the residual vector in our implementation, first the rigidity constraints

for each link are calculated and then the constraints for joints are calculated.
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Similarly, the Jacobian matrix is created in a column-first manner i.e. all

the partial differential equations with respect to an unknown state variable

are calculated before progressing to the next variable. The outlined method is

just one way of calculating Φ(qi) and [J(qi)] since their values are independent

of the sequence adopted to calculate each element.

Thus, using the constraint equations and their first order partial deriva-

tives, it is possible to solve iteratively for the solution using Newton-Raphson

method. The iterations are continued until a solution within desired accuracy

is calculated.

For some input link perturbations, the Newton-Raphson method might

fail to converge even after many iterations. In these instances, there does not

exist a mechanism state which fulfills all the constraint equations. As a result,

this input perturbation is outside the possible limits of motion of mechanism.

Thus, by iteratively perturbing the input link and solving the constraints

for other joint coordinates, we are able to simulate any general planar or spher-

ical mechanism. Numerous techniques exist that can improve the convergence

and efficiency of the Newton-Raphson method. However, the basic method

suffices to achieve real-time simulation. The complete algorithm has been

described in Algorithm 3.

4.4 Examples

This section presents sample examples to demonstrate the use of pro-

posed algorithm for mechanism simulation. The simulation has been carried

out in MATLAB on a PC running Core i5-7300 at 2.6GHz with 8GB RAM.

The simulation is carried out within seconds for residual value of 1.0e−8. Each

closed-loop output curve is made up of 180 points while open-loop curves have

less than 180. Each point corresponds to 2π
180

radian or units input perturba-
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Algorithm 3: Algorithm for planar and spherical mechanism simu-
lation

Input: Initial mechanism configuration
1 Calculate initial rigidity metric for each link
2 for range of input link motion do
3 Perturb input link
4 for max iterations do
5 Calculate the constraint residual
6 if residual ≤ ε then
7 Solution found
8 break

9 end
10 Calculate the Jacobian matrix
11 Calculate predicted unknown joint coordinates

12 end
13 if solution found then
14 Store as subsequent mechanism state
15 else
16 Motion limit reached

17 end
18 Animate the range of motion

Output: Mechanism simulation
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tions.

4.4.1 Speed comparison with a commercial software

To compare the speed of commercially available CAD systems and pro-

posed algorithm, a planar four-bar crank rocker mechanism with revolute joints

is modeled and simulated. Autodesk Inventor 2020 with educational license

is used as reference commercial CAD system. Simulation is performed for

180 time-steps with one degree input link perturbation for each time-step.

The simulation takes 5s to complete Inventor while it finishes in 1.4s when

the proposed algorithm is used. Thus, even for a simple mechanism, there

is a significant speed difference between the commercial solvers and proposed

methodology.

4.4.2 Planar Stephenson-II linkage

A planar Stephenson-II six-bar linkage is simulated in this example. This

linkage does not have a four-bar linkage and proves to be challenging to sim-

ulate using dyadic decomposition based approaches. However, our approach

handles these non-dyadic mechanisms without issues.

The six-bar mechanism is displayed in Fig. 4.2 and its joint and link

data is given in Table 4.1. The mechanism has J1, J7 as the fixed joints, J2

as the perturbed joint and J3, J4, J5, J6, J8 as the unknown joints defining the

11-dimensional state vector. The mechanism consists of ten rigidity constraint

equations and one homogeneous coordinate equation for prismatic joint. The

simulation algorithm successfully solves these constraints and plots the tra-

jectory of the coupler point J8 as shown in Fig. 4.2. The run-time of this

simulation was 3.79s.
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4.4.3 Planar Modified Theo Jansen linkage

In this example, a planar modified Theo Jansen linkage with one of its

revolute joints replaced by a floating prismatic joints is simulated. The eight-

bar mechanism is displayed in Fig. 4.6 and its joint and link data is given in

Table 4.3. J1, J5 are the fixed joints, J2 is the perturbed joint and the state

vector consists coordinates of J3, J4, J6, J7, J8. This results in a 11-dimensional

state vector. Ten rigidity constraint equations for links and one homogeneous

coordinate equation for prismatic joint are available for this mechanism. The

simulation algorithm plots the trajectory of the coupler point J8 as shown

in Fig. 4.6. Note, the length of stride for this modified mechanism is larger

than that of the conventional Theo Jansen mechanism which has revolute

joints only. As a result, this mechanism is a prospective candidate for walking

robots. The run-time of this simulation was 3.81s.

Figure 4.6: Planar modified Theo Jansen with floating prismatic joint
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Table 4.3: Joint and Link data for Modified Theo Jansen linkage

Joint Coordinates
J1,input 2.77, 2.31
J2 2.17, 3.33
J3 -0.50, 0.87, -4.80
J4 .66, -1.3
J5 -.22, 1.72
J6 -3.17, .66
J7 -2.08, -2.24
J8 2.54, -4.64

Link Constituent joints
L1 J1, J2
L2 J2, J3
L3 J2, J4
L4 J3, J5, J6
L5 J5, J4
L6 J6, J7
L7 J4, J7, J8

L8,ground J1, J5

4.4.4 Spherical RRPR mechanism

This example presents the simulation of a spherical RRPR mechanism

which is the spherical analog of the Whitworth quick-return mechanism. The

four-bar mechanism is displayed in Fig. 4.3 and it’s joint and link data is given

in Table 4.2. The mechanism has J1, J4 as the fixed joints, J2 as the perturbed

joint and J3, J5 as the unknown joints defining the 6-dimensional state vector.

The mechanism consists of four rigidity constraint equations for output and

coupler links which can be described using Eq. (4.1) and Eq. (4.6). Also, one

unit sphere equation for revolute joint using Eq. (4.11) and one homogeneous

coordinate equation for prismatic joint using Eq. (4.10) can be written. Once

the simulation is completed, the trajectory of coupler point J5 can be plotted

as shown in Fig. 4.3. The run-time of this simulation was 1.49s.

4.4.5 Spherical Watt-I linkage

In this example, a spherical Watt-I six-bar linkage with prismatic input

joint is simulated. Spherical Watt I type linkages have been used to design

door hinges for spatial movement. The six-bar mechanism is shown in Fig. 4.7

and its link and joint data is given in Table 4.4. From the data, its known

that J1, J6 are the fixed joints, J2, J3 are the perturbed joints and J4, J5, J7, J8
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are the unknown joints representing the 12-dimensional state vector. The

mechanism can be described using eight rigidity constraints for links and four

unit circle constraints. Perturbing the input link along the input prismatic

joint results in the motion of coupler point J8 as shown in Fig. 4.7. The

run-time of this simulation was 3.33s.

Figure 4.7: Spherical Watt I six-bar linkage

4.4.6 Spatial 5-SS Mechanism

In this section, we demonstrate the scalability of proposed algorithm to

spatial mechanisms by simulating a 5-SS platform linkage. A 5-SS mechanism

consists of five binary spherical-spherical (SS) links connected to a floating

coupler link on one end and the ground link on the other [64]. Although

using the Grüebler criterion [36], the mobility of this mechanism is six, five of

the rotational degrees for each binary link are redundant and therefore, 5-SS

platform linkage is a one degree-of-freedom mechanism.
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Table 4.4: Joint and Link data for Spherical RRPR linkage

Joint Coordinates
J1,input 0, 0, 1
J2 0.93, 0, 0.37
J3 0.85, -0.17, 0.51
J4 0.70, 0.70, 0.14
J5 0.73, 0.49, 0.49
J6 0.81, 0.41, -0.41
J7 0.48, -0.10, 0.87
J8 0.49, 0.49, 0.73

Link Constituent joints
L1 J1, J2, J3
L2 J2, J4, J5
L3 J4, J6
L4 J3, J7
L5 J5, J7, J8

L6,ground J1, J6

An example 5-SS mechanism is displayed in Fig. 4.8 and its joint and link

data is given in Table. 4.5. Since the input link perturbation approaches out-

lined in Section 4.3.1 only cover revolute and prismatic joints, a new approach

is needed for spherical input links. We attach a linear actuator between J1

and J7 to actuate the mechanism [64]. This results in the mechanism having

J1, J2, J3, J4, J5 as fixed joints and J6, J7, J8, J9, J10, J11 as the unknown joints

defining the 18-dimensional state vector. Five rigidity constraints for binary

links, twelve independent rigidity constraints for coupler and one additional

constraint for input actuator length is available for this mechanism. All these

constraints are modelled using Eq. (4.1) and the simulation is carried out to

generate a spatial trajectory of coupler point J11. The input prismatic link is

perturbed by .01 units and run-time of this simulation was 0.28s.

4.5 Conclusion

In this chapter, we have presented unified equations for motion simu-

lation of planar and spherical n−bar mechanisms and an efficient algorithm

for computation to enable real-time, interactive simulation. The approach is

general and uses simple geometric primitives, such as point, line, and planes

to represent the constraints inherent in mechanisms. A 5-SS mechanism is

simulated to demonstrate the scalability of the proposed approach to spatial
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Figure 4.8: Spatial 5-SS platform linkage

mechanisms. Once the mechanism is simulated and the path of coupler point

determined, velocity and acceleration curves can easily be determined using

numerical differentiation. Future research would involve finding appropriate

representation and rigidity constraints for cylindrical and helical joints to fur-

ther unify spatial synthesis.
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Table 4.5: Joint and Link data for Spatial 5-SS platform linkage

Joint Coordinates
J1 -7.2, -5.29, 7.87
J2 5.72, -0.71, -8.26
J3 -8.75, -4.60, 5.49
J4 -10.00, -8.72, 6.09
J5 -3.88, 6.61, 8.91
J6 -6.61, -9.99, 3.93
J7 8.19, -9.05, 6.07
J8 7.84, -5.73, -0.62
J9 4.15, -0.48, -2.04
J10 -0.97, -9.04, 1.92
J11 2.20, -7.17, 5.36

Link Constituent joints
L1 J1, J6
L2 J2, J7
L3 J3, J8
L4 J4, J9
L5 J5, J10
L6 J6, J7, J8, J9, J10, J11

L7,ground J1, J2, J3, J4, J5
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Chapter 5

Unified Design of Spatial, Spherical and Planar Mechanisms for

the Motion Synthesis Problem

5.1 Introduction

(a) Spatial 5-SS platform link-
age

(b) Spherical Four-
Bar Linkage

(c) Planar Four-Bar
Linkage

Figure 5.1: Kinematic diagrams of the family of mechanisms that can be
synthesized using proposed algorithm

Determining a kinematic mechanism, specified by its joint types and

pattern of their interconnection, and link dimensions, such that one of its

links passes through several specified poses is defined as the motion synthesis

problem [12, 65]. This problem has a rich literature dealing with the synthesis

of planar, spherical, and spatial mechanisms.

Of all types of mechanisms, synthesis and analysis of planar mechanisms

have been well investigated using analytical, graphical or optimization based

approaches. Burmester [15] first solved the planar four-bar motion synthesis

problem for five poses. Ravani and Roth [66] used a kinematic mapping based
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approach for motion synthesis for the first time. Larochelle [67] calculated

planar RR dyads using constraint manifold projection. Bawab et al. [68] syn-

thesized crank driven four-bar linkages using optimization theory. Holte et

al. [69] proposed a motion generation approach that incorporated both exact

and approximate pose constraints. Al-Widyan et al. [70] introduced a ro-

bust motion synthesis algorithm that better handled algorithmic singularities.

Brunnthaler et al. [71] also used kinematic mapping to generate a univariate

quartic and solve for four-bar mechanisms. Bourrelle et al. [72] used a graphi-

cal approach to calculate both RR and PR dyads for the five pose Burmester

problem. Larochelle [73] proposed an analytical approach that can handle

exact and approximate poses to produce planar RR dyads. Ge et al. [21] pro-

posed an algebraic fitting based unified type and dimensional synthesis for

planar mechanisms. Purwar et al. [18] created a mobile application to im-

plement a real-time motion synthesis algorithm which unifies pose constraints

and pivot location constraints. Deshpande and Purwar [19] further extended

this approach to nonlinear constraints using a Lagrange multiplier method.

Recently, they have also developed a machine learning based approach to syn-

thesize defect-free mechanisms [74, 75].

Spherical mechanism synthesis has been also conducted using kinematic

mapping based analytical approaches or optimization algorithms. Chiang pre-

sented an in-depth review on the kinematic analysis and synthesis of spherical

mechanisms [76]. Bodduluri and McCarthy [77] carry out finite position syn-

thesis of spherical mechanisms by minimizing the normal distance in the image

space. Lin [78] uses homotopy methods to generate spherical four-bar mech-

anisms for motion and path generation. Ruth and McCarthy [79] describe

SphinxPC, a computer-aided design software system for spherical four-bar

linkage synthesis. Brunnthaler et al. [80] used kinematic mapping to syn-
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thesize spherical four-bars. Zhuang et al. [81] have used an adaptive genetic

algorithm to synthesize spherical four-bars. Li et al. [60] solve a more general

n-discrete pose problem using kinematic mapping and synthesize spherical

four-bar mechanisms.

For spatial mechanisms synthesis, several algorithms have used kine-

matic mapping and numerical homotopy based approaches. Innocenti [82]

first extended the notion of geometric constraints to the construction of 5-

SS spatial platforms using spherical constraints and termed it the Spatial

Burmester problem. It has been shown that a 5-SS mechanism can pass ex-

actly through seven spatial poses. Liao and McCarthy [64] improved upon In-

nocenti’s work and formulated a methodology for singularity analysis. Plecnik

and McCarthy [83] used the 5-SS platform as a steering linkage. Li et al. [84]

carry out both type and dimensional synthesis of platform linkages using an

algebraic fitting approach to unify the spherical and planar constraints. Ge

et al. [85, 86] improved upon this algebraic fitting approach and incorporated

constraints on pivot locations.

In the above classic approaches, planar, spherical, and spatial mechanism

synthesis are considered as separate design problems. An ideal approach would

be one that can synthesize all types of mechanisms using a unified framework.

This serves as the motivation for this chapter. Ge et al. [87] have proposed

an approach that unifies the synthesis of planar and spherical dyads. Ge et

al. [88] also proposed a methodology to synthesize spatial RR dyads using an

intersection of SS dyads. It is well known that there exist planar and spherical

RR dyads for the five pose planar and spherical Burmester problems even when

the poses are represented as spatial poses [15, 76]. However, the approach by

Ge et al. is unable to generate RR dyads for the five spatial pose problem and

requires at least seven poses.
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(a) Family of SS dyads

(b) Family of PS dyads

Figure 5.2: Multiplicity in dyad solutions which satisfy seven spatial poses
lying on a sphere or plane

In this chapter, we present a novel algebraic fitting based algorithm

to unify spatial, spherical, and planar mechanism synthesis. We use a dual

quaternion representation to describe the pose data. The algorithm aims to

generate Spherical-Spherical (SS) and Revolute-Revolute (RR) dyads that can

be put together to form a spatial 5-SS, spherical four-bar, or planar four-

bar mechanism. Degenerate form of the SS dyad, i.e., the Planar-Spherical

(PS) dyad is also included in the framework. Kinematic diagrams of these
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(a) Family of Spherical RR dyads

(b) Family of Planar RR dyads

Figure 5.3: Multiplicity in dyad solutions which satisfy five spatial poses lying
on a sphere or plane

mechanisms have been displayed in Fig. 5.1. First, an existing methodology

to generate SS dyads for seven or more spatial poses is reviewed. However,

this method fails when all spatial poses lie on a sphere or a plane. We show

that there exists at least 3-∞ SS/PS dyad solutions for this special case and an

approach is proposed to find this solution space. Also, the coordinates of the

characteristic-sphere or -plane on which the spatial poses lie are determined.

For the spherical case, we generate a family of SS dyads that have their fixed

pivot (FP) located at the center of the characteristic sphere while their moving

pivot (MP) is free. Similarly, for the planar case, we get a family of PS dyads
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that have their FP in the same direction as the normal of the characteristic

plane and MP coordinates are free. This 3-∞ multiplicity in dyadic solutions

is visualized in Fig. 5.2 by the three cyan arrows denoting free MP coordinates.

Next, we tackle the spatial five-pose problem to find if a RR dyad exists.

There exist 2 − ∞ SS/PS dyads due to two less constraints than the seven

pose case. It is shown that at least 2-∞ RR dyad solutions can exist when the

five spatial poses lie on a sphere or plane. For a spherical RR dyad, its FP

and MP can move along the axis connecting to the center of the characteristic

sphere without any effect on kinematics of motion. Similarly, for a planar

RR dyad, its FP and MP can move perpendicular to its characteristic plane.

Constraints are systematically placed on this solution space to extract the RR

dyad existing on the characteristic sphere or plane. This 2-∞ multiplicity

in dyadic solutions is visualized in Fig. 5.3 by the two cyan arrows denoting

free MP coordinates. An approach to isolate distinct RR dyads from the 2-∞

solutions is proposed.

The chapter also enhances the robustness of existing approaches by

reducing possible algorithmic singularities, i.e., cases where a solution kine-

matic mechanism exists, but the algorithm fails to find it. According to the

Grubler’s criterion for spatial mechanisms, planar and spherical linkages are

over-constrained and thus prove challenging to incorporate in spatial motion

synthesis algorithms. However, they can now be synthesized using the pro-

posed algorithm in a unified manner. The algorithm is also able to find all

possible existing dyads, i.e., up to 20 SS dyads, up to 6 spherical RR dyads,

and up to 4 planar RR dyads.

The original contributions of this chapter are in 1) unification of planar,

spherical, and spatial motion synthesis problem into a single framework, 2)

developing insight into the dimensionality of dyadic solution space and using
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it to isolate planar and spherical RR dyads, and 3) enhancing the robustness

by addressing algorithmic singularities in existing motion synthesis algorithms

for cases where spatial poses lie on a plane or sphere.

The remaining chapter is organized as follows. Section 2 discusses the

representation of spatial poses using dual quaternions. Section 3 reviews the

unified constraint equation for plane and sphere constraints. Section 4 demon-

strates the existing algorithm to carry out motion synthesis using seven spatial

poses. Section 5 discusses the nature of solution space when all poses lie on a

sphere or a plane. Section 6 presents a systematic methodology to isolate RR

dyads from the solution space representing SS and PS dyads. Section 7 illus-

trates some examples before making concluding remarks in the last section.

5.2 Spatial Displacement Representation

In this section, we review the relations used to express spatial Poses

in the form of dual quaternions [32, 33]. Let a moving rigid body in space

be denoted by a coordinate frame M attached to it. A point on the moving

body with respect to M can be represented using homogeneous coordinates

c = (c1, c2, c3, c4). The same point is defined as C = (C1, C2, C3, C4) in fixed

frame F. The point coordinate transformation from moving frame M to fixed

frame F is given as

C =

R d

0 1

 c (5.1)

where R is the rotation matrix that describes the orientation of M relative to

F and d = (d1, d2, d3) is the vector from origin of F to M. The pose orientation

can be described using the Euler-Rodrigues parameters which involves rotation

axis and angle. The axis is represented by a unit vector s = (sx, sy, sz) and

rotation angle θ.
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A spatial pose can be represented using a unit dual quaternion Q = (q,g)

where the real part is quaternion q = (q1, q2, q3, q4) and dual part is quaternion

g = (g1, g2, g3, g4) [32]. It satisfies the relations

q21 + q22 + q23 + q24 = 1, (5.2)

q1g1 + q2g2 + q3g3 + q4g4 = 0. (5.3)

The dual quaternion Q can be calculated as follows

q1

q2

q3

q4


=



sxsin(θ/2)

sysin(θ/2)

szsin(θ/2)

cos(θ/2)


, (5.4)



g1

g2

g3

g4


=

1

2



0 −d3 d2 d1

d3 0 −d1 d2

−d2 d1 0 d3

−d1 −d2 −d3 0





q1

q2

q3

q4


. (5.5)

The relationships between dual quaternion Q and the rotation matrix R

and displacement vector d can be given as

R =


q24 + q21 − q22 − q23 2(q1q2 − q4q3) 2(q1q3 + q4q2)

2(q1q2 + q4q3) q24 − q21 + q22 − q23 2(q2q3 − q4q1)

2(q1q3 − q4q2) 2(q2q3 + q4q1) q24 − q21 − q22 + q23

 (5.6)

d = −2


g4q1 − g1q4 + g2q3 − g3q2

g4q2 − g2q4 + g3q1 − g1q3

g4q3 − g3q4 + g1q2 − g2q1

 (5.7)

The use of dual quaternion Q leads to a compact constraint equation

which is derived in the next section.
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5.3 Unified Representation of Spherical and Planar Constraints

In this section, we review the unified constraint relation derived in [86].

Some of the equations have been modified for clarity. For a spatial SS dyad,

its coupler point C = (C1, C2, C3, C4) is geometrically constrained on a sphere

whose radius and center are represented by homogeneous coordinates A =

(A0, A1, A2, A3, A4). This constraint can be given as

2A1C1 + 2A2C2 + 2A3C3 + A0C4 = A4

(
C2

1 + C2
2 + C2

3

C4

)
, (5.8)

A2
4r

2 − A0A4 = A2
1 + A2

2 + A2
3, (5.9)

where r is the radius of the sphere formed by SS dyad. When A4 = 0, the ge-

ometric constraint equation represents a plane described by a PS dyad. Equa-

tion (5.8) consists of seven independent parameters that specify a unique dyad

since Ai and Ci are homogeneous in nature.

The final dyadic constraint equation is obtained by substituting the fixed

frame coupler point (C) in geometric constraint equation Eq (5.8) with mov-

ing coordinate (c) according to transformation relationships in Eq (5.1). On

collecting similar terms, we can restructure constraint equation as follows

16∑
i=0

KiPi = 0 (5.10)
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where constraint space coefficients (CSCs) (K0, K1, ...K16) are given as

K0 = 1,

K1 = 2(q21 − q22 − q23 + q24),

K2 = 4(q1q2 + q3q4),

K3 = 4(q1q3 − q2q4),

K4 = 4(g4q1 + g3q2 − g2q3 − g1q4),

K5 = 4(q1q2 − q3q4),

K6 = 2(−q21 + q22 − q23 + q24),

K7 = 4(q2q3 + q1q4),

K8 = 4(−g3q1 + g4q2 + g1q3 − g2q4),

K9 = 4(q1q3 + q2q4),

K10 = 4(q2q3 − q1q4),

K11 = 2(−q21 − q22 + q23 + q24),

K12 = 4(g2q1 − g1q2 + g4q3 − g3q4),

K13 = 4(−g4q1 + g3q2 − g2q3 + g1q4),

K14 = 4(−g3q1 − g4q2 + g1q3 + g2q4),

K15 = 4(g2q1 − g1q2 − g4q3 + g3q4),

K16 = 4(−g21 − g22 − g23 − g24),

(5.11)

and the constraint space parameters (CSPs) (P0, P1, ...P16) are given as

P0 = A0c4 − A4c4

(
c21
c24

+
c22
c24

+
c23
c24

)
,

P1 = A1c1, P2 = A2c1, P3 = A3c1, P4 = A4c1,

P5 = A1c2, P6 = A2c2, P7 = A3c2, P8 = A4c2,

P9 = A1c3, P10 = A2c3, P11 = A3c3, P12 = A4c3,

P13 = A1c4, P14 = A2c4, P15 = A3c4, P16 = A4c4.

(5.12)
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Equation (5.10) is referred to as the Constraint equation (C-equation) and

it consists of 17 homogeneous CSPs Pi. Ai(i = 0 . . . 4) and cj(j = 1 . . . 4)

are referred to as the Dyadic parameters. The CSPs Pi are subjected to nine

additional bi-linear constraints defined as

P1

P13

=
P2

P14

=
P3

P15

=
P4

P16

= λ1 =
c1
c4
,

P5

P13

=
P6

P14

=
P7

P15

=
P8

P16

= λ2 =
c2
c4
,

P9

P13

=
P10

P14

=
P11

P15

=
P12

P16

= λ3 =
c3
c4
,

(5.13)

or

P1

P4

=
P5

P8

=
P9

P12

=
P13

P16

= µ1 =
A1

A4

,

P2

P4

=
P6

P8

=
P10

P12

=
P14

P16

= µ2 =
A2

A4

,

P3

P4

=
P7

P8

=
P11

P12

=
P15

P16

= µ3 =
A3

A4

,

(5.14)

where, λi(= ci/c4) represents the MP coordinate in the moving frame and

µi(= Ai/A4) represents the FP in the fixed frame. There exist alternative

ways of writing the bi-linear constraints which are equivalent to Eq. (5.13) or

Eq. (5.14),

These spherical and planar constraints can also represent other spatial

linkages. The geometric constraint for a Universal-Spherical (TS) link and an

RRS open chain with intersecting axes for the RR joints is a sphere. The

constraint for an RRS with parallel axis, a Prismatic-Revolute-Spherical, and

a Revolute-Prismatic-Spherical open chain is a plane.

Next, we discuss the algorithm which uses Eq (5.10) and Eq (5.13) to

synthesize platform mechanisms constrained by spherical or planar geometric

constraints.

86



5.4 Dyad Calculation for Seven or more General Spatial Poses

This section reviews the work done by Ge et al. [86, 87, 88] with minor

modifications. The motion synthesis algorithm takes a set of spatial poses

as input. To get unique solutions, at least seven spatial poses are required

by the algorithm. For less than seven poses, an infinite number of spherical

and planar constraints exist. The computation is carried out in three distinct

steps and the result is a set of unique dyads defined by their homogeneous

coordinates Ai and ci.

First, the pose constraints are enforced using Eq (5.10). Then, the bi-

linear constraints are imposed using Eq (5.13) to get unique values of the CSPs

Pi. Lastly, these values are mapped to their respective dyadic parameters Ai

and ci.

5.4.1 Applying Pose Constraints

First, the CSCs (Ki) for each spatial pose are calculated using Eq (5.10).

For an n-pose problem, these values can be consolidated into a linear system

of equations as follows

K1,0 K1,1 · · · K1,16

K2,0 K2,1 · · · K2,16

...
...

. . .
...

Kn,0 Ki,1 · · · Kn,16





P0

P1

...

P16


= [K]P = 0 (5.15)

where [K] represents the coefficient matrix. The null-space (solution subspace)

of this system of equation can be analyzed using Singular Value Decomposition

(SVD); i.e., [K] is factored into

[K] = [U][W][V]T (5.16)

where [U] is an n × n orthonormal matrix whose columns represent the left

singular vectors of [K]; [W] is the n× 17 diagonal matrix whose elements are
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square root of eigenvalues of [K][K]T ; and [V]T is the 17 × 17 orthonormal

matrix whose columns represent the right singular vectors. The null-space is

the vector subspace spanned by the right singular vectors corresponding to

singular values having negligible magnitude.

Since it is well known that a spatial SS dyad can exactly pass through a

maximum of seven poses, ten right singular vectors corresponding to singular

values having the least magnitude are selected. Basically, we apply seven con-

straints on a 17-dimensional solution space to get a ten-dimensional solution

subspace. When more than seven poses are inputted, the span of these ten sin-

gular vectors represent the solution space in the least square sense. Thus, the

solution dyad P can be given as a linear combination of ten singular vectors

and the ten-dimensional solution subspace is denoted as [V], i.e.,

P =
10∑
i=1

αivi =

[
v1 v2 · · · v10

]


α1

α2

...

α10


= [V]α. (5.17)

5.4.2 Applying Bi-linear Constraints

Next, we apply the nine bi-linear constraints on the solution space as

described in Eq (5.13). A naive approach would be to solve the system of non-

linear equation using numerical homotopy methods directly to find solutions.

However, such an approach is computationally intensive and not real-time. To

enforce the bi-linear constraints in a more efficient manner, [V] in Eq (5.17)
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is broken down into smaller system of equations as follows

P1

P2

P3

P4


=



v1,1 · · · v10,1

v1,2 · · · v10,2

v1,3 · · · v10,3

v1,4 · · · v10,4




α1

...

α10

 = W1α (5.18)



P5

P6

P7

P8


=



v1,5 · · · v10,5

v1,6 · · · v10,6

v1,7 · · · v10,7

v1,8 · · · v10,8




α1

...

α10

 = W2α (5.19)



P9

P10

P11

P12


=



v1,9 · · · v10,9

v1,10 · · · v10,10

v1,11 · · · v10,11

v1,12 · · · v10,12




α1

...

α10

 = W3α (5.20)



P13

P14

P15

P16


=



v1,13 · · · v10,13

v1,14 · · · v10,14

v1,15 · · · v10,15

v1,16 · · · v10,16




α1

...

α10

 = W4α (5.21)

The bi-linear constraints in terms of MP coordinate as mentioned in Eq.(5.13)

can now be imposed as follows

W1α = λ1W4α (5.22)

W2α = λ2W4α (5.23)

W3α = λ3W4α (5.24)

This generalized eigenvalue problem can be written as
W1 − λ1W4

W2 − λ2W4

W3 − λ3W4


12×10

α10×1 = [W]α = 0. (5.25)
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As we can note, Eq. (5.25) is a system of twelve equations with ten unknowns.

For this system of equations to have a non-trivial solution, the matrix [W]

needs to be rank reduced, i.e., at least have a rank of nine. If [W] has a

rank of nine, determinant of all 10 × 10 square sub-matrices of [W] has the

value zero. To find the solutions λi, the determinant of any three 10 × 10

sub-matrices of [W] is constrained to be zero. This results in three non-linear

polynomial equations in variables λ1, λ2, λ3 which can be solved using a poly-

nomial homotopy based solver, such as Bertini [89] or a symbolic solver, such

as Mathematica [90] or Maple [91] to get all possible solutions. The degree of

the three non-linear polynomial constraints can be up to ten. For the spatial

Burmester problem, it has been shown that there exists a univariate polyno-

mial equation of twentieth order whose roots represent the twenty solution

dyads [82]. Once the set of eigenvalues (λ1, λ2, λ3) are known, they can be

substituted back in Eq. (5.25) for upto 20 distinct system of equations. The

nullspace i.e. the rightmost singular vector can be calculated using SVD which

determines the solution vectors α. Finally, the solution CSPs Pi can be calcu-

lated using Eq. (5.17).

However, when the spatial poses lie on a sphere or a plane, the algorithm

fails to find distinct solution dyads. In the next section, we discuss how to

extract the solution space for this degenerate case.

5.4.3 Finding Dyadic Parameters

Once the CSPs are known, the dyadic parameters finally can be calcu-

lated. For a Planar geometric constraint, A4 = 0 due to which P4, P8, P12, and P16 =

0, while for spherical geometric constraints, A4 6= 0, i.e. P4, P8, P12, and P16

are nonzero.

If the constraint is spherical, its dyadic parameters represents the fixed

90



pivot coordinates (Ai) and moving pivot coordinates (ci) and are described

using the following inverse relationships

A0 : A1 : A2 : A3 : A4 = P0 +
P 2
4

P16

+
P 2
8

P16

+
P 2
12

P16

: P13 : P14 : P15 : P16 (5.26)

c1 : c2 : c3 : c4 = P4 : P8 : P12 : P16 (5.27)

Also, the radius of sphere can be calculated as

r =

√
P 2
13

P 2
16

+
P 2
14

P 2
16

+
P 2
15

P 2
16

+
P 2
4

P 2
16

+
P 2
8

P 2
16

+
P 2
12

P 2
16

+
P0

P16

(5.28)

If the constraint is planar, its dyadic parameters represents the plane

normal vector (Ai) and moving pivot coordinates (ci)

A0 : A1 : A2 : A3 = P0/2 : P1 : P2 : P3

= P0/2 : P5 : P6 : P7

= P0/2 : P9 : P10 : P11

= P0/2 : P13 : P14 : P15

(5.29)

c1 : c2 : c3 : c4 = P1 : P5 : P9 : P13

= P2 : P6 : P10 : P14

= P3 : P7 : P11 : P15

(5.30)

Thus, we obtain up to 20 unique SS/PS dyads which can satisfy the

initial spatial pose problem. Picking any five of the available 20 can lead up

to 15,504 unique solutions of one degree-of-freedom mechanisms.

5.5 Dyad Calculation for Seven or more Spatial Poses Lying on

a Sphere or Plane

In this section, we explore a special case of the spatial motion synthesis

problem where all the poses lie on a sphere or plane. The algorithm outlined

by Ge et. al. [86] fails to generate any solutions in this scenario.
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For a seven or more spherical/planar pose problem, we can easily impose

the pose constraints using nullspace analysis of Eq (5.15). However, when

applying the bi-linear constraints using Eq (5.25), we observe (when doing

numerical experiments) that all determinants of 10 × 10 sub-matrices have

zero magnitudes and are thus trivially satisfied. This entails that any values of

λ1, λ2, λ3 can be selected and a solution dyad can be found. Since λi represents

the coupler coordinates in the moving frame, the three coupler coordinates are

free variables which mean there exists a 3-∞ solution space of spherical or

planar constraints.

We also observe that the FP locations remain fixed for this family of

solutions. We call the sphere or plane on which these special spatial poses lie

as their characteristic-sphere or -plane, respectively. For the spherical case,

the FP is located at the center of the characteristic sphere while for the planar

case, the FP represents the normal vector of the characteristic plane. As a

result, the solutions are essentially a set of concentric spherical constraints

or parallel plane constraints. This family of solutions has been visualized in

Fig. 5.2 where the cyan arrows represent the free MP coordinates.

Within each of the 3-∞ family of solutions, there exists a special solution

dyad which has a zero-length coupler, i.e., it has (c1, c2, c3 = 0). This dyad

has the same radius/intercept and FP as the characteristic sphere/plane. Ex-

istence of the zero-coupler length dyad can be used as an elegant way to check

if a set of spatial poses lie on a sphere/plane. According to Eq. (5.12), the

zero length coupler dyad has its CSPs (P1, · · · , P12 = 0) due to zero coupler

coordinates. To check for its existence, [V] in Eq (5.17) is broken down into
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smaller system of equations as follows
P1

...

P12

 =


v1,1 · · · v10,1

...
...

v1,12 · · · v10,12



α1

...

α10

 = 0 (5.31)

If the null-space of Eq (5.31) is one dimensional, i.e., a non-trivial null-space

exists, the poses lie on a sphere/plane and there exist 3-∞ solution dyads.

Once the αi are known, they can be back substituted in Eq. (5.17) to find

CSPs Pi for zero-length coupler dyad and the Ai for FP coordinates. In this

way, the parameters of the characteristic sphere or plane can be calculated.

However, we have yet to determine the four-dimensional solution subspace for

CSPs.

Alternative to Eq. (5.14), there also exist an equivalent set of bi-linear

constraints in terms of FP as follows

P2

P1

=
P6

P5

=
P10

P9

=
P14

P13

=
A2

A1

P3

P1

=
P7

P5

=
P11

P9

=
P15

P13

=
A3

A1

P4

P1

=
P8

P5

=
P12

P9

=
P16

P13

=
A4

A1

(5.32)

Imposing these constraints results in an alternative system of equations to
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Eq. (5.25) as follows

Z1 =



v1,1 · · · v10,1

v1,5 · · · v10,5

v1,9 · · · v10,9

v1,13 · · · v10,13


, Z2 =



v1,2 · · · v10,2

v1,6 · · · v10,6

v1,10 · · · v10,10

v1,14 · · · v10,14


, (5.33)

Z3 =



v1,3 · · · v10,3

v1,7 · · · v10,7

v1,11 · · · v10,11

v1,15 · · · v10,15


, Z4 =



v1,4 · · · v10,4

v1,8 · · · v10,8

v1,12 · · · v10,12

v1,16 · · · v10,16


, (5.34)


Z2 − (A2/A1)Z1

Z3 − (A3/A1)Z1

Z4 − (A4/A1)Z1


12×10

α10×1 = [Z]α = 0. (5.35)

where A1, A2, A3, A4 represents the homogeneous FP coordinates.

To calculate the basis vectors of the 3-∞ solution space, we back-substitute

FP coordinates into Eq. (5.35) and calculate [Z]. Due to the 3−∞ solution,

the rank of [Z] is six and there exist four singular vectors α. We concatenate

them as [α] matrix of dimension 10 × 4 and back-substitute in Eq. (5.17) to

find four-dimensional CSPs that represent the basis solution subspace. Since

CSPs are homogeneous in nature, their 4-D subspace maps to 3-∞ solution

SS or PS dyads. This completes the calculation of the subspase representing

3-∞ solution dyads. The complete algorithm for seven or more spatial pose

synthesis has been visualized in Fig. 5.4.

Thus, we can analytically find the 3-∞ spherical or planar constraints

to motion synthesis problem for seven or more spatial poses that lie on a

sphere/plane. Next, we solve the motion generation problem involving five

spatial poses, which lie on a sphere or plane.
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Figure 5.4: A step by step visualization of proposed algorithm to solve motion
synthesis problem for seven or more spatial poses

5.6 Dyad Calculation for Five Spatial Poses

It is well known that a spherical or planar four-bar RRRR mechanism

can pass exactly through a maximum of five poses. The MP of their solution

RR dyads is constrained to lie on a circle. For planar mechanisms, there exist

up to four circle constraints while for spherical mechanisms, there exist up to

six circle constraints for the five pose problem. Thus, to synthesize planar and

spherical mechanisms, we need to calculate these circle constraints.

In previous sections, we discussed the generation of spherical/plane con-

straints that represent SS/PS dyads. A spatial circle constraint, representing

an RR dyad, can be calculated as a sphere-sphere intersection or a plane-sphere

intersection. For spherical mechanisms, the RR dyad can be represented as an

intersection of the characteristic sphere of poses and a sphere whose center lies

on the surface of the characteristic sphere. Similarly, for planar mechanisms,

an RR dyad can be represented as an intersection of the characteristic plane of

poses and a sphere whose center lies on the surface of the characteristic plane.

These cases have been visualized in Fig. 5.5. Note, that the MP coordinates

of the two distinct intersecting primitives need to be equal (and consequently

lie on a circle) for the intersection to be a valid RR dyad. In this section, we

first find the characteristic sphere/plane and then find the unique spherical

constraints that are located on the characteristic sphere/plane by imposing
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appropriate constraints on the solution space.

(a) Spherical RR dyad

(b) Planar RR dyads

Figure 5.5: Representing a circle constraint as a sphere-sphere intersection or
a plane-sphere intersection

First, the five pose constraints are applied using null-space analysis on

Eq (5.15) and resulting in a 12-dimensional solution space [V1] as follows

P =
12∑
i=1

αiv1i =

[
v11 v12 · · · v112

]


α1

α2

...

α12


= [V1]α. (5.36)

This is in contrast to the 10-dimensional solution space [V] as seen in Eq. (5.17).

Next, we check if the five spatial poses lie on a sphere/plane by finding
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their characteristic-sphere or -plane. We follow the same approach of calcu-

lating the dyad with zero-length coupler as outlined in Sec. 5.5 by finding the

null-space of the following system of equations
P1

...

P12

 =


v11,1 · · · v112,1

...
...

v11,12 · · · v112,12



α1

...

α12

 = 0 (5.37)

If a null-space exists, the radius/intercept and FP coordinates of the charac-

teristic sphere/plane can be calculated by back-substituting the values of αi

in Eq. (5.36). In this case, there exists a possibility of existence of RR dyads.

If a null-space does not exist for Eq. (5.37), the five poses problem only

have SS/PS dyads and no RR dyads. Since the problem has two fewer pose

constraints than seven poses, there exist at least 2-∞ SS or PS dyads. These

dyads can be calculated by enforcing bilinear constraints using Eq. (5.25) with

the following changed dimensionality
W1 − λ1W4

W2 − λ2W4

W3 − λ3W4


12×12

α12×1 = [W1]α = 0 (5.38)

where W1,W2,W3,W4 submatrices are calculated from [V1] in Eq. (5.36).

The [W1] matrix, in this case, has a dimension of 12 × 12. Constraining the

determinant of this 12 × 12 matrix to zero results in a single constraint on

variables (λ1, λ2, λ3). We can plug in two free variables and the third can be

calculated to find a solution λi .Thus, 2-∞ solution SS dyads can be calculated

for five general spatial poses.

In the previous section, we discussed the existence of the 3-∞ solution

space when the spatial poses lie on a sphere or plane. However, when a planar

or spherical RR dyad exists, an additional 2-∞ solution space exists. It is well

known that for spherical RR dyad, the FP and MP can be located anywhere on
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the axis that passes through the center of the characteristic sphere. Similarly,

for a planar RR dyad, moving the FP and MP coordinates perpendicular to

the characteristic plane does not affect the motion of the coupler point. This

family of solutions has been visualized in Fig. 5.3, where the cyan arrows

represent the free directions in which FP and MP coordinates are free to move

while satisfying the pose constraints.

Out of these 2-∞ spherical solutions, our aim is to isolate the spherical

constraint whose FP and MP lies on the characteristic sphere/plane. We know

that both FP and MP have 1-∞ solution multiplicity each. Since λ1, λ2, λ3

represent MP coordinates in Eq. (5.38), we can constrain 1-∞ solutions by

fixing λ3 = 1 in matrix [W1]. Due to fixing a free variable, Eq. (5.38) now

contains 1-∞ solution and thus its rank should be 10. To find this solution

space, we set the determinant of two 11 × 11 sub-matrices of [W1] to zero and

find the solution set for λ1, λ2. We observe that there exist upto six solutions

for spherical case and four solutions for planar case which is in agreement with

common knowledge for five pose synthesis. λ1 and λ2 are back-substituted in

Eq. (5.38) and all two-dimensional null-spaces of [W1] are calculated as sets

of αi. These two-dimensional αi are back-substituted in Eq. (5.36) to get

two-dimensional solution spaces for CSPs Pi.

Randomly sampling a single dyad from each of the solution spaces gives

us all the unique RR dyads denoted by their FP and MP coordinates. The

axis of rotation for spherical RR dyad is the line joining FP and center of the

characteristic circle. For a planar RR dyad, the axis of rotation is the line

passing through FP in the direction perpendicular to the characteristic plane.

However, these unique dyads don’t lie on the characteristic sphere/surface

since we have randomly sampled them. Since the equation of characteristic

sphere/plane and the axis of rotation is known, it is fairly trivial to find the re-
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quired FP. To find the MP coordinates on the characteristic sphere/plane, the

coordinates need to be transformed from moving frame to fixed frame before

they can be projected onto the characteristic sphere/plane. Thus, we can suc-

cessfully find planar RR dyads using the spatial motion synthesis algorithm.

The complete algorithm for five spatial pose synthesis is displayed in Fig. 5.6.

Figure 5.6: A step by step visualization of proposed algorithm to solve motion
synthesis problem five spatial poses

5.7 Examples

5.7.1 Example 1: Motion synthesis for seven general poses

To test our algorithm for accuracy we put it to test using the example

from Innocenti’s paper [82]. The pose quaternions are given in Table 5.1 and

the twenty output dyads are given in Table 5.2, which match with the original

results. The input poses are shown in Fig 5.7. A 5-SS mechanism is created

using the smallest radius spheres and its geometric model is shown in Fig. 5.8.

As can be observed from Table 5.2, the output from the proposed algorithm

agrees up to four digits after decimal with results from Innocenti’s paper.

5.7.2 Example 2: Motion synthesis for seven spherical poses

To validate the multiplicity of solutions in case where spatial poses lie on

a sphere, we choose seven poses as shown in Fig. 5.9a and given in Table 5.3.
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Figure 5.7: Input spatial poses for example 1

Figure 5.8: Five of the total twenty output spherical constraints for example
1. The green links have their FP located at their orange ends while the other
end is the MP. The dotted lines represent the floating link.
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Table 5.1: Seven Input Poses in Dual Quaternion representation for Example
1

q1 q2 q3 q4 g1 g2 g3 g4
0 0 0 1 0 0 0 0

-0.0651026 0.00725456 -0.75133 0.656667 0.607675 0.136295 -0.0644337 -0.0149826
-0.298121 -0.59615 0.526405 0.527851 -0.285992 -0.0998713 -0.379727 0.104369
-0.376624 0.859028 0.339364 0.0711109 0.138837 0.163292 -0.449864 0.90963
-0.582787 -0.346858 0.734635 0.018995 0.0351985 0.906884 0.447598 0.329131
0.00431816 -0.0844728 -0.561614 0.823064 -2.33102 0.1092 -0.690907 -0.448
0.821544 0.147805 0.372509 0.405532 0.205892 -0.485491 -0.539083 0.255028

Table 5.2: Synthesized Dyads for example 1

Dyad A1 A2 A3 A4 C1 C2 C3 C4 r
1 -1.4532 -0.4131 -1.1781 1 1.3606 0.0849 -1.0281 1 2.8615
2 -0.3764 -0.2694 -2.255 1 2.1434 -0.9266 -0.1025 1 3.3786
3 -0.4049 -0.8841 -1.2398 1 1.6293 1.8376 -1.7463 1 3.4354
4 0.8106 -0.9742 -2.7163 1 2.3575 0.664 0.2455 1 3.7214
5 0.2611 2.4586 -3.4243 1 -1.5559 1.1521 0.2328 1 4.2874
6 0.9736 2.9071 -3.0424 1 -0.9779 1.0619 0.4361 1 4.3947
7 -0.1484 2.679 -0.4008 1 0.161 -0.6354 2.4776 1 4.4007
8 1.2796 0.716 -1.2142 1 -0.6459 4.1423 0.9059 1 4.4657
9 -3.4211 -0.2941 1.4625 1 0.7026 -0.3223 -0.6563 1 4.6363
10 -3.8199 -3.7259 4.3852 1 0.8758 2.4775 2.7771 1 7.9447
11 -2.5613 -4.1576 -8.7597 1 -0.3029 0.2047 -0.9218 1 9.25
12 -4.0709 -2.56 -3.6963 1 -1.3247 -7.2043 5.0687 1 10.2926
13 0.8993 -0.907 0.1315 1 3.4589 3.3523 -9.6642 1 10.984
14 -7.8388 -0.0889 9.6483 1 0.3671 -0.5878 -0.9344 1 13.4007
15 -7.7369 -9.6348 -10.4396 1 -0.4714 1.5845 -1.9814 1 15.8177
16 0.073 -0.5606 0.2413 1 -5.3932 3.2032 25.0842 1 25.7141
17 -3.2431 -34.9651 -7.2184 1 5.4831 -5.0918 14.7174 1 38.0754
18 -48.9413 -37.5477 -43.9745 1 -0.0682 5.1441 -4.516 1 75.9482
19 -7.9651 2.5179 -4.8166 1 51.361 26.9419 -62.1902 1 86.0688
20 75.4808 37.5827 -87.3605 1 -43.3276 -113.601 -109.994 1 193.608

As discussed in the chapter, we can calculate a four dimensional output space

which is given in Table 5.4. The characteristic sphere for these poses is centred

at (−0.512653, 0.166042, 0.402181) and has a radius of 1. The four-dimensional

solution space represents a family of spherical constraints which are coincident

with the characteristic sphere.

Table 5.3: Input Spherical Poses in Dual Quaternion representation for exam-
ple 2

q1 q2 q3 q4 g1 g2 g3 g4
0.0359951 0.595485 0.624179 0.504483 0.100504 0.191117 0.198061 -0.477817
-0.863559 -0.298669 -0.404926 0.0331426 -0.131388 0.157084 0.171486 0.0873328
-0.386719 0.256693 -0.25578 -0.848018 0.272862 -0.0203728 -0.628229 0.0588879

-0.00189387 0.302044 0.16847 0.938288 -0.136238 0.121647 0.58056 -0.143674
-0.762556 0.141124 0.630785 0.0265215 0.0877535 0.391824 0.0457285 -0.649417
0.165336 -0.883582 -0.393837 0.191934 -0.346006 -0.134437 0.347322 0.391852
0.0313552 0.853597 0.304762 -0.421319 0.388445 0.0337678 -0.516785 -0.276495
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(a) Seven poses lying on a sphere (b) Seven poses lying on a plane

Figure 5.9: Input spatial poses for example 2 and 3

Table 5.4: Synthesized CSP Solution space for example 2

P0 P1 P2 P3 P4 P5 P6 P7 P8

0.315904 0.329053 -0.106576 -0.258145 -0.641863 -0.169279 0.0548276 0.132801 0.330202
-0.0264274 -0.199656 0.0646664 0.156632 0.389457 -0.374148 0.121182 0.293523 0.729827
-0.740367 0.171908 -0.0556789 -0.134863 -0.33533 -0.0877932 0.0284352 0.0688747 0.171253
-0.314513 -0.0573885 0.0185875 0.0450219 0.111944 0.068077 -0.0220494 -0.0534071 -0.132794

P9 P10 P11 P12 P13 P14 P15 P16

-0.0380594 0.012327 0.029858 0.0742401 -0.156662 0.0507411 0.122903 0.305591
0.014512 -0.00470027 -0.0113848 -0.0283077 -0.0282476 0.00914906 0.0221605 0.0551008
0.148797 -0.0481936 -0.116733 -0.290249 0.149594 -0.0484517 -0.117358 -0.291804
0.17701 -0.0573316 -0.138866 -0.345283 -0.351882 0.11397 0.276055 0.686394

5.7.3 Example 3: Motion synthesis for seven planar poses

Similar to the previous example, in this example, we validate the multi-

plicity of solutions in cases where spatial poses lie on a plane. The seven input

poses as shown in Fig. 5.9b and given in Table 5.5. As discussed in the chapter,

we can calculate a four-dimensional output space which is given in Table 5.6.

The characteristic plane has the normal vector as (0.513483,-0.48064,0.710859)

and the intercept as 0.549628. It can be observed that the solution space is a

family of plane constraints which are parallel to the characteristic plane.
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Table 5.5: Input Planar Poses in Dual Quaternion representation for example
3

q1 q2 q3 q4 g1 g2 g3 g4
0.355749 -0.134214 0.854875 0.353013 0.980586 -0.376976 -0.51362 0.112298
0.314093 0.214281 0.201594 0.902657 -1.91212 1.4711 0.697185 0.16042
0.255202 -0.281855 0.92174 -0.0763208 1.39753 0.435009 -0.272715 -0.227058
0.119561 -0.360937 0.812314 -0.44224 1.38602 -0.460968 -0.403417 0.0099337
0.109936 -0.363984 0.800286 -0.46365 -1.96301 0.554419 0.893871 0.642179
0.33642 -0.177179 0.891969 0.244581 1.46594 1.92175 0.0213357 -0.702059

0.0836475 -0.370909 0.765112 -0.519647 2.95867 0.534235 -0.570964 -0.745735

Table 5.6: Synthesized CSP Solution space for example 3

P0 P1 P2 P3 P4 P5 P6 P7 P8

-0.286692 0.44113 -0.412914 0.610694 0 0.0852415 -0.0797893 0.118007 0
0.630011 0.25607 -0.239692 0.3545 0 -0.12697 0.118848 -0.175775 0
-0.0506416 -0.00602674 0.00564125 -0.00834332 0 -0.471286 0.441141 -0.652441 0
0.597709 -0.0588312 0.0550682 -0.081445 0 0.134788 -0.126166 0.186598 0

P9 P10 P11 P12 P13 P14 P15 P16

0.147883 -0.138424 0.204727 0 0.13514 -0.126496 0.187086 0
-0.239448 0.224133 -0.331488 0 -0.141365 0.132323 -0.195703 0
0.107174 -0.100319 0.14837 0 0.171337 -0.160378 0.237197 0
0.0556503 -0.0520908 0.0770414 0 0.380452 -0.356117 0.526692 0

5.7.4 Example 4: Motion synthesis for five spherical poses which

fall on a circle constraint

To verify the correct working of the proposed algorithm, we use spherical

poses from an example used by Zhuang et al. [81] and transform them to an

arbitrary spatial sphere. The poses are translated by (.5,−.3, .4) and rotated

by Euler angles (15◦, 15◦, 15◦). The input poses are given in Table 5.7 and have

been plotted in Fig 5.10a. We obtain six solutions representing each spherical

RR dyad as given in Table 5.10. Each of the six solution dyads is shown in

Fig 5.12. As can be observed from Table 5.10, the output from the proposed

algorithm agrees up to four digits after decimal with results from the paper

by Zhuang et. al. [81]

103



(a) Five poses lying on a sphere (b) Five poses lying on a plane

Figure 5.10: Input spatial poses for example 4 and 5

Table 5.7: Input Spatial Poses in Dual Quaternion representation for example
4

q1 q2 q3 q4 g1 g2 g3 g4
0.111411 0.145194 0.111411 0.976777 0.271041 -0.207793 0.736754 -0.0840615
0.616384 -0.049129 0.433949 0.655245 0.0839802 -0.391689 0.538847 -0.465229
0.537275 0.248421 0.428057 0.682928 0.18105 -0.370636 0.620746 -0.396696
0.115335 0.131981 0.0830842 0.981008 0.272383 -0.202523 0.737001 -0.0671956
0.0409948 -0.261604 0.605156 0.750779 0.0184403 -0.276204 0.466294 -0.473098

Table 5.8: Synthesized six spherical RR dyadic parameters for example 4

A1 A2 A3 A4 C1 C2 C3 C4 r
0.579085 0.695201 0.457631 1 0.56608 0.470253 -0.234306 1 0.7277
0.661773 -1.00196 1.0936 1 0.586939 -0.471541 1.38133 1 0.608065
0.73826 0.0664105 -0.499431 1 0.530103 -0.589928 -0.556575 1 0.690923
0.752583 -0.38842 -0.563527 1 0.219313 -0.871137 -0.371374 1 0.744523
0.80072 0.0237179 1.29709 1 1.32461 -0.0332188 0.898845 1 0.660533
1.18109 0.426381 0.492128 1 1.15123 0.206906 -0.164748 1 0.693215

5.7.5 Example 5: Motion synthesis for five planar poses which

fall on a circle constraint

For this example, we use planar poses from an example used by Ge

et al. [21] and transform them to an arbitrary spatial plane. The poses are

translated by (.2,−.3, .2) and rotated by Euler angles (15◦, 15◦, 15◦). The poses
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Figure 5.11: Set of six RR dyad solutions for example 4. The red link is the
floating link while the blue link has one end fixed (FP) and the other end
moving(MP).

are given in Table 5.9 and have been plotted in Fig 5.10b. We obtain four sets

of solution spaces representing each planar RR dyad as given in Table 5.10.

Each of the four solution dyads is shown in Fig 5.12. As can be observed from

Table 5.10, the output from the proposed algorithm agrees upto four digits

after decimal with results from the paper by Ge et al. [21]

Table 5.9: Input Spatial Poses in Dual Quaternion representation for example
5

q1 q2 q3 q4 g1 g2 g3 g4
0.18182 0.0208603 0.779558 0.598996 -0.694984 -0.283932 0.177855 -0.010623
0.173037 0.0595978 0.63196 0.753083 -0.811229 0.0912475 0.256593 -0.0361472
0.162258 0.084653 0.513016 0.838642 -1.18682 0.385687 0.358205 -0.0284309
0.157636 0.0929757 0.468714 0.864184 -1.61222 0.444565 0.435748 0.00991535
0.158956 0.0907013 0.481082 0.85736 -1.93825 0.297065 0.472565 0.0627621
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Figure 5.12: Set of four RR dyad solutions for example 5. The red link is
the floating link while the blue link has one end fixed (FP) and the other end
moving(MP).

Table 5.10: Synthesized four planar RR dyadic parameters for example 5

A1 A2 A3 A4 c1 c2 c3 c4 r
2.35097 0.0675858 -0.438144 1.0000 6.45577 6.50408 0 1.0000 11.199
1.20255 0.348633 -0.0026419 1.0000 4.58995 1.34007 0 1.0000 4.6712
2.73061 2.27873 -0.124526 1.0000 5.03163 -7.40889 0 1.0000 4.06469
-1.87116 -0.754965 0.794402 1.0000 1.24 0.1 0 1.0000 1.23773

5.8 Conclusion

In this chapter, we have proposed a methodology to unify the spatial,

spherical, and planar motion synthesis problems. We use the algebraic fitting

algorithm and intelligently constrain the solution spaces to find all possible

RR dyads for spherical and planar four-bar mechanisms and SS dyads for 5-

SS spatial mechanisms. The algorithm also provides deeper insights in the

106



nature of solution space generated while performing spatial synthesis of mech-

anisms.
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Chapter 6

Path Synthesis of Defect-free Spatial 5-SS Mechanisms using

Machine Learning

6.1 Introduction

Path synthesis problem is the determination of the dimensions of a kine-

matic mechanism to guide one of its links through many specified points [12,

65]. Extensive research has been done to solve the path generation prob-

lem for planer mechanisms. Analytical methods for synthesis include alge-

braic methods [92, 93, 94, 59], complex number methods [95] and displace-

ment matrix methods [1]. Optimization-based techniques attempt to mini-

mize an objective function and find mechanisms, which best approximate a

curve [2, 96, 4, 6, 61, 74]. Atlas-based approaches explore the use of curve

invariants like Fourier descriptors to intelligently form and search a database

of coupler curves [27, 97].

A substantial literature on the synthesis of Spherical mechanisms is also

available [76, 98, 99]. However, exploring the path synthesis problem for spatial

one degree-of-freedom mechanisms has been relatively limited. Premkumar et

al. have proposed an optimization based solution for the synthesis of the RRSC

and RRSS spatial mechanisms [100, 101]. Ananthasuresh and Kramer solve

the synthesis of the RSCR spatial mechanism using the Generalized Reduced

Gradient method of optimization [102]. Jiménez et al. outline a generalized

constraint based optimization technique [103]. Sun et al. use an atlas-based
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approach which uses the Fourier series to compare curves and synthesize RCCC

spatial mechanism [104]. In this chapter, we focus on the path synthesis of

spatial 5-SS mechanisms that haven’t been explored before. A 5-SS mechanism

has been displayed in Fig. 6.1.

Figure 6.1: Sample 5-SS mechanism

As can be observed in the figure, spatial 5-SS mechanism coupler paths

tend to have multiple branches and circuits. We can see two circuits and

each circuit has many branches separated by singularity points. Chase and

Mirth discuss in great detail the challenges faced in synthesizing practical one

degree-of-freedom mechanisms due to circuit and branch defects[105]. Roth

and Freudenstein have discussed the occurrence of defects in mechanism syn-

thesis for path generation using numerical methods [106]. Wampler et al. show

that there exist many defective mechanisms for the nine-point path synthesis

problem [107]. These defects tend to be more prominent in spatial mechanisms

when compared to planar mechanisms. Thus, to synthesize practical spatial

mechanisms, we consider path synthesis for defect-free mechanisms.

In this chapter, we use unsupervised machine learning algorithms to
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synthesize mechanisms. First, the relevant data is generated using Newton-

Raphson based kinematic solver. Then the data is normalized, pruned, and

augmented using intrinsic space curve properties like curvature and torsion.

After that, we use Variational Autoencoder to generate multiple plausible

trajectory signatures that fall in the family of defect-free 5SS coupler curves.

These signatures are finally looked up in a hierarchical database created using

the K-means clustering algorithm.

Rest of the chapter is organized as follows: Section 2 presents the numer-

ical approach to generate 5-SS coupler curves; Section 3 discusses the method-

ology devised to improve data quality; Section 4 uses unsupervised machine

learning tools to calculate multiple solution mechanisms and finally, Section 5

shows two examples solving the path synthesis problem.

6.2 Data Generation

For a machine learning based approach to work, a large amount of data

is required. In this chapter, this data would include 5-SS mechanisms with

their coupler point trajectory. This is achieved by creating a Newton-Raphson

method based solver which uses the general constraint equations proposed in

our previous work [108] given in Eq. (6.1).

During a spatial motion, a 5-SS spatial mechanism is subjected to a

set of constraints imposed by the rigidity of its links. The general constraint

enforces the rigidity of a binary link with two spherical joints represented

by two homogeneous point coordinates of the fixed point (a1, a2, a3, a4) and

floating point (c1, c2, c3, c4), where a4 and c4 are homogenizing factors. The

constraint equation is given as

CSS : 2a1c1 + 2a2c2 + 2a3c3 + a0c4 = a4

(
c21 + c22 + c23

c4

)
, (6.1)
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where a0 is given as

a0 = a4r
2 − a21 + a22 + a23

a4
. (6.2)

Here, r is the radius of the sphere formed by the SS link with the center given

by (a1, a2, a3, a4).

A spatial 5-SS mechanism is subjected to seventeen independent rigidity

constraints. These include the five constraints for the SS-dyads and twelve

constraints for the coupler link. During a simulation, there exist eighteen

unknown parameters and fifteen known parameters. The (x, y, z) coordinates

of the five fixed pivots are the known parameters while the (x, y, z) of the five

moving pivots and the coupler point are the unknowns. This results in one

degree of freedom motion.

To actuate the 5-SS mechanism, a linear actuator placed between the

fixed pivot of the first dyad and moving pivot of the second dyad. Liao and

McCarthy also use the same actuation scheme in their paper on seven pose

synthesis of 5-SS linkages [109]. The length of the actuator imposes an addi-

tional constraint on the motion and can be defined using Eq (6.1) as a spherical

constraint with a changing radius. Now, to simulate the mechanism, the in-

put actuator is iteratively perturbed by a finite displacement and the new

position of the mechanism is calculated until the algorithm fails to converge.

Newton-Raphson algorithm fails to converge at singular configurations and

these configurations occur at the extreme of each defect-free trajectory where

circuit defect occurs.

For a 5-SS mechanism, a system of eighteen unknowns and eighteen

constraint equations can be formed and is represented as

Φ(q) = 0 (6.3)

where q is the state vector that consists of the unknown coordinates. The well-

known Newton-Raphson method can be used to solve this nonlinear system of
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equations and get a unique solution. Since the linear actuator is perturbed by

a small finite displacement, the previous state of mechanism serves as a good

initial approximation.

The iterative simulation algorithm followed can be defined as

qi+1 = qi − [J−1(qi)]Φ(qi) (6.4)

where qi is the state vector at ith iteration, Φ(qi) is the vector of residuals at

q = qi, and [J−1(qi)] is the inverse of Jacobian matrix evaluated at q = qi.

The Jacobian matrix is of the following form

[J(q)] =



∂φ1
∂q1

∂φ1
∂q2

· · · ∂φ1
∂q16

∂φ2
∂q1

∂φ2
∂q2

· · · ∂φ2
∂q16

· · · · · · · · · · · ·
∂φ16
∂q1

∂φ16
∂q2

· · · ∂φ16
∂q16


. (6.5)

To calculate the Jacobian matrix, relations describing the first order partial

derivatives of constraint equations are required. For an SS dyad described in

Eq (6.1), the first order partial derivatives can be given as follows

∂CSS
∂a1

= 2(a1 − c1) (6.6)

∂CSS
∂a2

= 2(a2 − c2) (6.7)

∂CSS
∂a3

= 2(a3 − c3) (6.8)

Here, the homogeneous point coordinate a4 and c4 has been assumed as unity

without loss in generality.

Thus, by iteratively perturbing the input actuator and solving the con-

straints for other moving pivot coordinates, we can simulate a 5-SS mechanism

and extract the path traced by coupler point. There does exist an accuracy-

storage trade-off for the simulation process. The accuracy of the path increases

with decrease perturbation magnitude. However, this results in sampling more

points on the path and thus needs more storage.
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Figure 6.2: A 5-SS mechanism simulation where black triangles are the fixed
pivots, blue solid lines are the SS dyads, green lines are the floating coupler
link, red curve is the coupler path, and dotted blue line is the linear actuator.

For this chapter, we generated a data set of 7,500 defect-free coupler

paths using arbitrarily selected 5-SS mechanisms. Fig. 6.2 shows one of the

simulated mechanisms. This database represents a family of paths a general

5-SS mechanism can achieve. In the next section, we discuss the methodology

used to refine this data set for machine learning purposes.

6.3 Data Preprocessing

Before the generated data can be used for machine learning, the data

needs to be normalized, cleaned and augmented.

6.3.1 Normalizing the number of constituent points in each path

A spatial coupler curve is defined as an array of n 3-D data points. In

the data set of 7,500 path curves, we observe that n ranges from 2 to 3,126 as
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can be seen in Fig. 6.3. Since curves with a very low number of data points do

not capture its geometry well, we choose to ignore them. Thus, curves made

of less than ten data points are removed resulting in a data set of 7,408 curves.

Figure 6.3: Histogram showing number of data points in each path curve
included in database

The remaining curves are fitted with a fourth-order B-spline interpolation

curve. Then, 100 data points are uniformly sampled on each curve leading

to an arc-length based parametrization. The benefit of using this arc-length

parametrization is that it allows a unique coupler curve representation which is

time-invariant. This property is desirable since it makes comparing two curves

with a similar trajectory but different time parametrization much easier as has

been demonstrated in Fig. 6.4.

6.3.2 Normalizing the location, orientation, and scale of paths

Creating a curve representation which is translation, rotation and scaling

invariant is desirable. First, the mean (x̄, ȳ, z̄) of the curve is calculated and

it is translated to origin. Next, the principal axes of the curve are rotated
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Figure 6.4: Curve 1 and Curve 2 represents the same geometric curve with
different time parametrization. They share the same unique arc length
parametrization as shown in Curve 3

to align with x, y, z axes. The principal component axes are the eigenvectors

of the covariance matrix of the point cloud that defines the curve. Also, the

curves are scaled to unit arc-length. The effect of normalization on a sample

path curve has been demonstrated in Fig. 6.5.

Figure 6.5: Before and after normalizing a path curve

6.3.3 Incorrect Path Cleanup

When the solver is simulating a 5SS-mechanism, it may jump from one

branch to another due to inherent limitations of numerical methods. Due to
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the discontinuity at points where branch jump happens, the invalid coupler

paths have extremely high curvature or torsion. For a spatial curve, Curvature

is a scalar measurement of the magnitude of the bending of the curve within

the osculating plane at a point as the point moves along the curve. Torsion is

a scalar measurement of the amount that the curve bends out of the osculating

plane at a point as the point moves along the curve. The curvature and torsion

can be calculated as follows

κ =
||r′(t)× r′′(t)||
||r′(t)||3

, (6.9)

τ =
(r′(t)× r′′(t)) · r′′′(t)
||r′(t)× r′′(t)||2

, (6.10)

where r(t) is the curve.

To isolate the incorrect paths, the Z-score metric, also called the stan-

dard score is used. A Z-score indicates how many standard deviations an

element is from the mean and is given as

z =
X − µ
σ

(6.11)

where µ is the mean and σ is the standard deviation. We calculate three

Z-score of maximum curvature (Zκ,max), maximum torsion (Zτ,max) and min-

imum torsion (Zτ,min). In our study, an outlier is defined as any curve having

Zκ,max > 1.5 or Zτ,max > 3 or Zτ,min < −3. An example of an outlier has

been shown in Fig. 6.6. Filtering out the outliers results in a clean database

containing 7,200 coupler paths.

6.3.4 Coupler path diversity balancing

The database in its present form is unbalanced i.e. it has more samples

of coupler paths which are more probable while lesser samples of other more

diverse examples. This leads to the algorithm not learning well since it comes

across the more probable examples most of the time. To overcome this bias,
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Figure 6.6: An outlier path curve with high curvature. The branch jump
occurs at the red dot denoted on curve

a limited number of diverse paths are selected from the complete database by

under sampling similar curves.

According to the fundamental theorem of space curves in differential

geometry, every regular curve in three-dimensional space, with non-zero cur-

vature, has its shape completely determined by its curvature and torsion.

Thus, a good metric to compare the similarity of two curves are these Curva-

ture–Torsion Descriptors. The curvature is always positive while the torsion

can be negative. We define the similarity score (δ) as a weighted sum of P2

norms of difference between curvature and torsion of two curves which is given

as

δ =
||κ2(s)− κ1(s)||2 + w||τ2(s)− τ1(s)||2

n
(6.12)

where w is the weight and n is the total number of constituent points in each

curve. Since the numerical calculation of torsion can end up being somewhat

inaccurate, we set the weight at w = .1 in this chapter. We select the similarity

metric threshold such that if δ < .065, the two curves are similar and one of

them is dropped from the database. It can be observed in Fig. 6.7 that some
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curves occur up to 170 times in the database. On further exploring, we find

that the common curves represent simple arcs and line trajectories and their

reflections as seen in Fig. 6.8. Under-sampling similar curves lead to a balanced

data set containing 5,021 coupler paths.

Figure 6.7: Bar graph showing the number of similar curves found for each
curve.

6.3.5 Adding mirrored paths

In kinematics, it is known that if a path is a valid coupler path, its

mirrored curve is also a valid path. For the machine learning algorithm to gain

this domain knowledge, coupler paths mirrored across xy,yz and zx planes are

added to the database. Thus, this step to encourage the model to be invariant

to mirror operations. After this step, our database contains 20,084 curves.

6.3.6 Adding noise to paths

Finally, some Gaussian noise is added to all the curves. This acts as a

regularizer to the machine learning algorithm, encourages robust learning, and

avoids overfitting.
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Figure 6.8: Most common variety of curves in the database

6.4 Machine Learning based Path Synthesis

Now that the database has been normalized, cleaned, and augmented, it

can be used to train a machine learning model.

6.4.1 Training using Variational Autoencoder

The goal of our machine learning model is to learn the distribution behind

the family of defect-free 5-SS coupler curves. It should be able to generate

multiple plausible trajectories that fall in this family and is similar to the

user-inputted path. Also, it should provide a low dimensional signature to

the coupler path which can easily be compared to other curves as a similarity

metric.

To achieve this, we use a Variational Autoencoder (VAE) which is a

type of generative neural network. It trains on coupler path (Xpath) and ap-

proximates the underlying distribution of observed data. As can be seen in
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Fig. 6.9, it uses the encoder model to find the latent distributions defined as a

multivariate Gaussian distribution defined by mean vector µ and standard de-

viation vector σ. A latent vector z can then be sampled from this distribution

and used to generate similar path trajectories using the decoder model. The

encoder is represented as qθ(z|X) where θ are the encoder weights and biases

while a decoder is represented as pφ(X|z) where φ denotes decoder weights

and biases.

Figure 6.9: Architecture of a Variational Autoencoder

The loss function used to train the VAE is defined as sum of reconstruc-

tion loss and KL divergence which is given as

Loss = RL+KL (6.13)

RL =

√√√√ n∑
i=1

d2i (6.14)

di =
√

(x̂i − xi)2 + (ŷi − yi)2 + (ẑi − zi)2 (6.15)

KL =
k∑
i=1

σ2
i ‘ + µ2

i − log(σi)− 1 (6.16)

where the latent space is k dimensional, each path consists of n points and the

reconstruction loss is the Eucledian norm.

Multiple VAEs with different depths and bottlenecks were tested to find

the best architecture. The capacity of a network increases with increasing

depths and it can describe a much more complex function. However, due to
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the problem of vanishing gradient, deep networks tend to be harder to train.

Thus, there exists an optimal depth that balances complexity and trainability.

Similarly, the narrower the bottleneck layer, the better is the dimensional-

ity reduction. However, reducing the width too much can lead to loss of

excessive information. Networks with depth=(1,2,3,4) and bottleneck layer

width=(15,30,60) were tested and the results are given in Table 6.1. Each

VAE is trained for 3000 epochs with a batch size of 256 using Adam (adaptive

moment estimation) optimizer.

Table 6.1: VAE model architectures that were tested and their performances

Name Encoder Arch. Latent (z) dim. Decoder Arch. Training loss Validation loss
VAE-FC-H1-Z15 (100) 15 (100) 10.5323 10.5466
VAE-FC-H1-Z30 (100) 30 (100) 10.8516 10.8248
VAE-FC-H1-Z60 (100) 60 (100) 10.8739 10.8573
VAE-FC-H2-Z15 (150,75) 15 (75,150) 10.2167 10.2773
VAE-FC-H2-Z30 (150,75) 30 (75,150) 10.2189 10.2589
VAE-FC-H2-Z60 (150,75) 60 (75,150) 10.2577 10.2853
VAE-FC-H3-Z15 (200,100,60) 15 (60,100,200) 10.0575 10.0999
VAE-FC-H3-Z30 (200,100,60) 30 (60,100,200) 9.9742 10.0760
VAE-FC-H3-Z60 (200,100,60) 60 (60,100,200) 10.0260 10.0821
VAE-FC-H4-Z15 (200,150,100,60) 15 (60,100,150,200) 10.0175 10.1155
VAE-FC-H4-Z30 (200,150,100,60) 30 (60,100,150,200) 10.1348 10.1911
VAE-FC-H4-Z60 (200,150,100,60) 60 (60,100,150,200) 10.2031 10.2924

We notice that VAE-FC-H3-Z30 performs the best. It contains three

hidden fully-connected layers consisting of 200, 100 and 60 nodes each, ReLU

activation function after each layer and the bottleneck layer z contains 30

nodes. The training curves of VAE-FC-H3-Z30 can be seen in Fig. 6.10.

The image processing community has successfully used convolution lay-

ers for feature extraction to enhance the performance of image classification

algorithms [110]. One of the reasons for this success is that the convolution

layers conserve the locality of information while the fully connected layers lose

this spatial information. Another advantage of a convolution layer is weight

sharing which leads to reduced memory requirements.

For spatial curves, the local geometry of a curve segment is heavily de-

pendent on previous and next curve segments due to the continuity constraints.
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Figure 6.10: Training losses for the fully connected VAE

This is especially true in the case of interpolation curves like B-splines where

each control point has local effect [111]. Since using convolution layers make

sense, they are augmented to the VAE-FC-H3-Z30 model architecture and

their effectiveness is empirically tested. The VAE-COV-H8-Z30 has five 1D-

convolution layers followed by three fully connected layers. Each convolution

layer has a kernel=2, stride=2 and filters=(5,10,15,20,25). The fully connected

layer size is (200,100,60) and the bottleneck layer size is 30. 1d-deconvolution

is used for the decoder. The learning curves for this model are shown in

Fig. 6.11. We find that this model performs even better and has a training

loss of 9.9034 and a validation loss of 10.0311.

Some sample outputs generated using VAE-COV-H8-Z30 are shown in

Fig 6.12 where an input curve (red) generates five trajectories (gray) sampled

from the underlying distribution.

6.4.2 Creating a Hierarchical Database

Once the training is completed, the recognition model is used to generate

signatures of coupler curves in the database denoted by the µ vector. Then,
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Figure 6.11: Training losses for the Convolutional VAE

Figure 6.12: Comparing X (red curve) and X̂ (grey curves)
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these signatures are clustered into 500 groups using K-Means Clustering. The

distance metric used is the Euclidean distance. As a result, we get 500 cluster

centers subdividing the original dataset of 20k+ coupler curves.

6.4.3 Mechanism synthesis for User Inputted Trajectory

When the user inputs a curve Xpath, it’s run through the encoder net-

work of VAE to find the µ and σ vectors. Multiple z vectors are then sampled

from the latent distribution which denotes a family of feasible curve signa-

tures. These curve signatures are then compared to each of the cluster centers

using the P2 norm error metric. Once a center is selected, the best available

mechanism within the cluster can be returned to the user as a feasible solution.

Thus, the user can find multiple defect-free solution mechanisms.

6.5 Examples of Path Synthesis for Spatial Curve

In this section, we provide two examples of our algorithm in action. In

the examples, we input a spatial trajectory. The trajectory is then processed

by the encoder of our VAE resulting in a 30-dimensional Gaussian distribution

specified by µ and σ. We sample five latent vectors z from this distribution

and look up the closest cluster centers in our database. In the cluster, we

find the best approximation of the coupler path available and provide it as a

solution.

The input trajectory is shown in the first plot in Fig. 6.13 and Fig. 6.14.

The other plots show a prospective 5-SS solution that closely matches the

target path. More mechanisms can be generated by sampling additional latent

vectors from the VAE.
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Figure 6.13: Example 1
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Figure 6.14: Example 2
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6.6 Conclusion

Thus, in this chapter, we have discussed a complete pipeline including

data generation, data cleanup, and machine learning model creation for defect-

free path synthesis of spatial 5-SS mechanism. To generate coupler path data,

we use a geometric constraint based numerical approach which uses Newton-

Raphson optimization. Then, the data is pre-processed using intrinsic curve

properties including curvature and torsion. Finally, unsupervised machine

learning techniques of VAE and K-mean clustering are used to efficiently find

solution mechanisms.

127



Chapter 7

A Machine Learning Approach to Solving the Alt-Burmester

Problem for Synthesis of Defect-free Spatial Mechanisms

7.1 Introduction

Kinematic synthesis of mechanisms has been conventionally classified

and studied as path, motion and function generation problems [1, 65]. Path

synthesis problems considers path-point coordinates (xi, yi, zi) as input con-

straints while motion synthesis problems involves pose constraints (xi, yi, zi, αi, βi, γi)

where (xi, yi, zi) are the location coordinates of moving frame attached to the

coupler link and (αi, βi, γi) represent the moving frame orientations expressed

as Euler angles. The function synthesis problem aims to generate a mechanism

to satisfy input-out angle pairs (θi, ζi)

Extensive research has been done to solve the path generation problem

for planer, spherical, and spatial mechanisms. Analytical methods for synthe-

sis include algebraic methods [14, 92, 93, 94, 59], complex number methods [95]

and displacement matrix methods [1]. Optimization-based techniques attempt

to minimize an objective function and find mechanisms, which best approx-

imate a curve [2, 96, 4, 6, 61, 74]. Atlas-based approaches explore the use

of curve invariants like Fourier descriptors to intelligently form and search a

database of coupler curves [27, 97]. Neural network based approaches have

also been proposed for planar path synthesis [8, 112]. Chiang presents an ex-

haustive review of the kinematics of spherical mechanisms [76]. Atlas-based
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methods exist for path generation of spherical mechanism [98, 99]. Premku-

mar et al. have proposed an optimization based solution for the synthesis

of the RRSC and RRSS spatial mechanisms [100, 101]. Ananthasuresh and

Kramer solve the synthesis of the RSCR spatial mechanism using the Gener-

alized Reduced Gradient method of optimization [102]. Jiménez et al. outline

a generalized constraint based optimization technique [103]. Sun et al. use

an atlas-based approach which uses the Fourier series to compare curves and

synthesize RCCC spatial mechanism [104].

Similarly, the motion synthesis of planer, spherical, and spatial mech-

anisms is also a well-researched problem. Kinematic mapping and algebraic

fitting based algorithms have been used for type and dimensional synthesis of

planar mechanisms [15, 66, 113, 22, 21]. Generalizations of these approaches

using analytical, homotopy or optimization based algorithms have been pro-

posed for both spherical mechanisms [77, 78, 79, 80, 81, 60] and spatial mech-

anisms [82, 64, 83, 84].

Unfortunately, the theoretical demarcation between path and motion

synthesis does not play well with real-world problems. Many practical prob-

lems require a designer to satisfy a mixture of both path and pose constraints.

Using path synthesis or motion synthesis algorithms in these situations lead

to a sub-optimal solution which cannot satisfy all the product design specifi-

cations.

Tong et al. [13] solved the Alt-Burmester problems named after Alt’s [14]

and Burmester’s [15] for planar four-bar mechanisms. Brake et al. [16] pro-

posed a homotopy based approach to solve this problem, also for planar four-

bar mechanisms. Zimmerman [17] presented a geometric approach to find

four-bar solutions for the mixed synthesis problem. In our previous work [62],

we proposed a motion synthesis approach to solve Alt-Burmester problems
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(a) Training Pipeline

(b) Inference Pipeline

Figure 7.1: Algorithm Schematic

using Fourier descriptor relationships. However, this approach requires that

we painstakingly discover the connection between the properties of the path

and the motion, which may be attempted only for simpler mechanisms, such

as planar four-bar. Therefore, the literature available on Alt-Burmester prob-

lems is fairly recent and restricted in scope to studying planar mechanisms. In

this chapter, we propose a machine learning based approach to solve the Alt-

Burmester problems for spatial mechanisms. Although the chapter focuses on

the synthesis of 5-SS mechanisms, the approach is general enough to handle

any spatial mechanism.

A 5-SS platform linkage consists of a rigid floating body supported by

five legs, each with a spherical joint on both ends. A kinematic view of a 5-SS

mechanism is shown in Fig. 7.2. The motion of coupler point for a sample

5-SS mechanism has been displayed in Fig. 7.3.

As can be observed in Fig. 7.3, spatial 5-SS mechanism coupler curves

tend to have multiple branches and circuits. We can see two circuits and

each circuit has many branches separated by singularity points. Chase and
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Figure 7.2: Kinematic diagram for a 5-SS mechanism

Figure 7.3: Motion of coupler point of a sample 5-SS mechanism

Mirth discuss in great detail the challenges faced in synthesizing practical one

degree-of-freedom mechanisms due to circuit and branch defects[105]. Roth

and Freudenstein have discussed the occurrence of defects in mechanism syn-

thesis for path generation using numerical methods [106]. Wampler et al. show

that there exist many defective mechanisms for the nine-point path synthesis

problem [107]. These defects tend to be more prominent in spatial mechanisms

when compared to planar mechanisms. Thus, to synthesize practical spatial
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mechanisms, we consider the synthesis of defect-free mechanisms.

The field of computer vision has spearheaded the use of machine learn-

ing technologies to solve challenging real-life problems [114, 115]. One of these

problems has been Image inpainting which aims to restore damaged paintings

and photographs [116]. Use of generative models like Variational Autoen-

coders (VAEs) [117] and Generative Adversarial Networks (GANs) [118] have

proved to be extremely successful in adding missing information to corrupted

images [119, 120]. We use these data augmentation techniques to reformulate

the Alt-Burmester problem into a motion synthesis problem. A VAE is trained

to take the path and pose data as input, add missing orientations, and return

pure motion constraints as output.

In this chapter, we use semi-supervised machine learning algorithms

to synthesize mechanisms. First, the coupler motion data is generated us-

ing Newton-Raphson based kinematic solver. Then this data is normalized,

pruned, and augmented using curvature and torsion of path-curves and quater-

nion based orientation data. After that, we use a VAE to learn the underlying

relationship between path and orientation data. Once the training phase is

completed, the VAE is utilized to reformulate the Alt-Burmester problem into

a motion synthesis problem by augmenting missing orientation data. A variety

of plausible motion trajectory signatures, that fall in the family of defect-free

5SS coupler motions, can be generated. These latent signatures are finally

looked up in a hierarchical database, created using the K-means clustering

algorithm, to find solution mechanisms. Alternatively, classical motion syn-

thesis algorithms can also be used at this stage to generate mechanisms. The

algorithm proposed in this chapter has been visualized in Fig. 7.1.

Rest of the chapter is organized as follows: Section 2 presents the nu-

merical approach to generate 5-SS coupler motions; Section 3 discusses the
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methodology devised to make data more conducive to learning; Section 4 uses

semi-supervised machine learning tools to calculate multiple solution mecha-

nisms and finally, Section 5 shows examples solving the spatial Alt-Burmester

problem.

7.2 Data Generation

For a machine learning based approach to work, a large amount of data is

required. In this chapter, this data would include 5-SS mechanisms with their

coupler motion trajectory. This is achieved by creating a Newton-Raphson

method based solver which uses the general constraint equations proposed in

our previous work [121] given in Eq. (7.1).

During a spatial motion, a 5-SS spatial mechanism is subjected to a

set of constraints imposed by the rigidity of its links. The general constraint

enforces the rigidity of a binary link with two spherical joints represented

by two homogeneous point coordinates of the fixed point (a1, a2, a3, a4) and

floating point (c1, c2, c3, c4), where a4 and c4 are homogenizing factors. The

constraint equation is given as

CSS : 2a1c1 + 2a2c2 + 2a3c3 + a0c4 = a4

(
c21 + c22 + c23

c4

)
, (7.1)

where a0 is given as

a0 = a4r
2 − a21 + a22 + a23

a4
. (7.2)

Here, r is the radius of the sphere formed by the SS link with the center given

by (a1, a2, a3, a4).

A spatial 5-SS mechanism is subjected to seventeen independent rigidity

constraints. These include the five constraints for the SS-dyads and twelve

constraints for the coupler link. During a simulation, there exist eighteen

unknown parameters and fifteen known parameters. The (x, y, z) coordinates
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of the five fixed pivots are the known parameters while the (x, y, z) of the five

moving pivots and the coupler point are the unknowns. This results in one

degree of freedom motion.

To actuate the 5-SS mechanism, a linear actuator placed between the

fixed pivot of the first dyad and moving pivot of the second dyad. Liao and

McCarthy also use the same actuation scheme in their paper on seven pose

synthesis of 5-SS linkages [64]. The length of the actuator imposes an addi-

tional constraint on the motion and can be defined using Eq (7.1) as a spherical

constraint with a changing radius. Now, to simulate the mechanism, the in-

put actuator is iteratively perturbed by a finite displacement and the new

position of the mechanism is calculated until the algorithm fails to converge.

Newton-Raphson algorithm fails to converge at singular configurations and

these configurations occur at the extreme of each defect-free trajectory where

a circuit defect occurs.

For a 5-SS mechanism, a system of eighteen unknowns and eighteen

constraint equations can be formed and is represented as

Φ(q) = 0 (7.3)

where q is the state vector that consists of the unknown coordinates. The well-

known Newton-Raphson method can be used to solve this nonlinear system of

equations and get a unique solution. Since the linear actuator is perturbed by

a small finite displacement, the previous state of mechanism serves as a good

initial approximation.

The iterative simulation algorithm followed can be defined as

qi+1 = qi − [J−1(qi)]Φ(qi) (7.4)

where qi is the state vector at ith iteration, Φ(qi) is the vector of residuals at

q = qi, and [J−1(qi)] is the inverse of Jacobian matrix evaluated at q = qi.
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The Jacobian matrix is of the following form

[J(q)] =



∂φ1
∂q1

∂φ1
∂q2

· · · ∂φ1
∂q18

∂φ2
∂q1

∂φ2
∂q2

· · · ∂φ2
∂q18

· · · · · · · · · · · ·
∂φ18
∂q1

∂φ18
∂q2

· · · ∂φ18
∂q18


. (7.5)

To calculate the Jacobian matrix, relations describing the first order partial

derivatives of constraint equations are required. For an SS dyad described in

Eq (7.1), the first order partial derivatives can be given as follows

∂CSS
∂a1

= 2(a1 − c1) (7.6)

∂CSS
∂a2

= 2(a2 − c2) (7.7)

∂CSS
∂a3

= 2(a3 − c3) (7.8)

Here, the homogeneous point coordinate a4 and c4 has been assumed as unity

without loss in generality.

Thus, by iteratively perturbing the input actuator and solving the con-

straints for moving pivot coordinates, we can simulate a 5-SS mechanism and

extract the path traced by the six points P = (Px, Py, Pz, 1) on the coupler.

There does exist an accuracy-storage trade-off for the simulation process. The

accuracy of the path increases with decrease perturbation magnitude. How-

ever, this results in sampling more points on the path and thus needs more

storage.

To find the coupler orientation, the displacement matrix Df can be cal-

culated using the six points on coupler as

Df = PfP
+
i = PfP

∗
i (PiP

∗
i )−1 (7.9)

where Pi = [P T
i,1, P

T
i,2, · · · , P T

i,6] is the matrix representing initial coupler coor-

dinates and Pf = [P T
1 , P

T
2 , · · · , P T

6 ] represents the coupler coordinates after
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Figure 7.4: A 5-SS mechanism simulation where black triangles are the fixed
pivots, gray lines are the SS dyads, light blue lines are the floating coupler,
and the red, green blue arrows represent the moving frame attached to the
coupler.

displacement. The 3× 3 rotation matrix R is isolated from the 4× 4 displace-

ment matrix Df and stored in unit quaternion form. Thus, a spatial coupler

motion is represented by a 7-D curve consisting of three location coordinates

and four quaternion coordinates.

For this chapter, we generated a data set of 10,000 defect-free coupler

motions using arbitrarily selected 5-SS mechanisms. Fig. 7.4 shows one of the

simulated mechanisms. This database represents a family of motions a general

5-SS mechanism can achieve. In the next section, we discuss the methodology

used to refine this data set for machine learning purposes.
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7.3 Data Preprocessing

Before the generated data can be used for machine learning, the data

needs to be cleaned, normalized, balanced, augmented, and masked.

7.3.1 Data Cleanup

A spatial coupler motion is defined as an array of n 7-D data points. In

the data set of 10,000 motion curves, we observe that n ranges from 1 to 1,562

as can be seen in Fig. 7.5. Since curves with a very low number of data points

do not capture its geometry well, we choose to ignore them. Thus, curves

made of less than 20 data points are removed resulting in a data set of 9,472

curves.

Figure 7.5: Histogram showing number of data points in each motion curve
included in database

When the solver is simulating a 5SS-mechanism, as outlined in Sec-

tion 7.2, it may jump from one branch to another due to inherent limitations

of numerical methods. These incorrect motions are characterized by a C1 dis-

continuity at the point where the branch jump occurs. Example of such curves

have been shown in Fig. 7.6.
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Figure 7.6: Coupler curves with C1 discontinuity caused due to a branch jump.

Thus, to isolate the incorrect curves, the first order differential is calcu-

lated and spikes in its magnitude are observed. The Z-score metric, also called

the standard score is used to characterize these spikes. A Z-score indicates

how many standard deviations an element is from the mean and is given as

z =
X − µ
σ

(7.10)

where µ is the mean and σ is the standard deviation. In our study, an outlier

is defined as any curve having Zmax > 15. Filtering out the outliers results in

a clean database containing 8,688 coupler curves.

7.3.2 Data Normalization

The remaining coupler motions are fitted with an interpolation curve.

Fourth-order B-spline [111] interpolation is used for path data while spherical

linear quaternion interpolation (Slerp) [122] is used for orientation data. 25

data points are uniformly sampled on each curve leading to an arc-length based

parametrization. The benefit of using this arc-length parametrization is that

it allows a unique coupler curve representation which is time-invariant. This
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property is desirable since it makes comparing two curves with a similar trajec-

tory but different time parametrization much easier as has been demonstrated

in Fig. 7.7.

Figure 7.7: Curve 1 and Curve 2 represents the same geometric curve with
different time parametrization. They share the same unique arc length
parametrization as shown in Curve 3

Creating a curve representation which is translation, rotation, and scal-

ing invariant is desirable when comparing curves. For the path data, first the

mean (x̄, ȳ, z̄) of the curve is calculated and it is translated to origin. Next,

the principal axes of the path data are rotated to align with x, y, z axes. The

principal component axes are the eigenvectors of the covariance matrix of the

point cloud that defines the curve. Also, the path data is scaled to unit arc-

length. The orientation data is normalized by rotating the moving frame such

that it is aligned to the fixed frame axis at the start of motion. The effect of

normalization on a sample coupler motion has been demonstrated in Fig. 7.8.

7.3.3 Data Balancing

The database in its present form is unbalanced i.e. it has more samples

of coupler curves which are more probable while lesser samples of other more

diverse examples. This leads to the algorithm not learning well since it comes

across the more probable examples most of the time. To overcome this bias,
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Figure 7.8: Before and after normalizing a motion curve

a limited number of diverse motions are selected from the complete database

by under-sampling similar curves.

According to the fundamental theorem of space curves in differential

geometry, every regular curve in three-dimensional space, with non-zero cur-

vature, has its shape completely determined by its curvature and torsion [123].

Thus, a good metric to compare the similarity of two curves are these Curva-

ture–Torsion Descriptors. For a spatial curve, Curvature is a scalar measure-

ment of the magnitude of the bending of the curve within the osculating plane

at a point as the point moves along the curve. Torsion is a scalar measurement

of the amount that the curve bends out of the osculating plane at a point as

the point moves along the curve. The curvature and torsion can be calculated

as follows

κ =
||r′(t)× r′′(t)||
||r′(t)||3

, (7.11)

τ =
(r′(t)× r′′(t)) · r′′′(t)
||r′(t)× r′′(t)||2

, (7.12)

where r(t) is the curve. The curvature is always positive while the torsion can

be negative.
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For the path data, we calculate the curvature and torsion while we use

the quaternion data directly to compare curves. We define the similarity score

(δ) as a weighted sum of P2 norms of difference between path curvature (κ),

path torsion (τ), and orientation quaternion (Q) of two motions which is given

as

δ =
||κ2 − κ1||2 + w1||τ2 − τ1||2 + w2||Q2 −Q1||2

n
(7.13)

where w1 and w2 are the weight and n is the total number of constituent

points in each curve. Since the numerical calculation of torsion can end up

being somewhat inaccurate, we set the weight w1 = .1 in this chapter. Weight

w2 = 1 so that equal importance is given to both path data and orientation

data. We select the similarity metric threshold such that if δ < 0.25, the two

curves are similar and one of them is dropped from the database. It can be

observed in Fig. 7.9 that some curves occur up to 170 times in the database.

On further exploring, we find that the common curves represent simple arcs

and line trajectories and their reflections as seen in Fig. 7.10. Under-sampling

similar curves lead to a balanced data set containing 5,222 coupler paths.

7.3.4 Data Augmentation

In kinematics, it is known that if a curve is a valid coupler motion, its

mirrored curve is also a valid motion. For the machine learning algorithm to

gain this domain knowledge, coupler motions mirrored across xy,yz, and zx

planes are added to the database. Thus, this step is to encourage the model to

be invariant to mirror operations. Since reflecting the moving coordinate frame

converts it from a right-handed system to a left-handed system, we attach a

new right-handed frame to the coupler and recalculate the orientation data

over the motion. After this step, our database contains 20,888 motion curves.
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Figure 7.9: Bar graph showing the number of similar curves found for each
curve.

Figure 7.10: Most common variety of motions in the database
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7.3.5 Data Masking

For the machine learning model to learn the underlying kinematic re-

lationship between path-points and orientations, we synthetically mask the

coupler motion database to create a path+pose constraint database. To cre-

ate a masked motion from a n-point coupler motion, m-points (0 ≤ m ≤ n)

are randomly selecting and the orientations of these m points are set to zero.

Also, a 1D binary mask is created representing the locations where the infor-

mation is missing. An example of unmasked and masked motion curves are

shown in Fig. 7.11. The mask value is 0 at m-points and 1 at the remaining

points. This operation increases the database size to 417,760 masked motion

curves.

Figure 7.11: An unmasked and masked 5SS coupler motion curve

Finally, some Gaussian noise is added to all the curves. This acts as

a regularizer to the machine learning algorithm, encourages robust learning,

and avoids overfitting. The magnitude of the added noise is up to 3% the

maximum magnitude of motion curve coordinates.

This concludes the data preprocessing pipeline which generates two databases
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that are used to train the machine learning models. First is the database

containing 7-D pure coupler motion curves defined by three location coor-

dinates and four orientation coordinates. Second is the database containing

8-D masked coupler motion curves defined by three location coordinates, four

orientation coordinates, and one mask coordinate.

7.4 Machine Learning based Synthesis

Now that the database has been processed it can be used to train a

machine learning model.

7.4.1 Training using Variational Autoencoder

The goal of our machine learning model is to learn the distribution behind

the family of defect-free 5-SS coupler curves. It should be able to generate

multiple plausible trajectories that fall in this family and is similar to the

user-inputted path and motion constraints. Also, it should provide a low

dimensional signature to the coupler curve which can easily be compared to

other curves as a similarity metric.

To achieve this, we use a Variational Autoencoder (VAE) which is a

type of generative neural network. It trains on partial motion curves (Xmix)

and predicts complete motion curves (Xmot) by approximating the underlying

distribution of observed data. As can be seen in Fig. 7.12, it uses the en-

coder model to find the latent distributions defined as a multivariate Gaussian

distribution defined by mean vector µ and standard deviation vector σ. A la-

tent vector z can then be sampled from this distribution and used to generate

unmasked motion trajectories using the decoder model. The encoder is repre-

sented as qθ(z|X) where θ are the encoder weights and biases while a decoder

is represented as pφ(X|z) where φ denotes decoder weights and biases.
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Figure 7.12: Architecture of a Variational Autoencoder

The loss function used to train the VAE is defined as sum of reconstruc-

tion loss and KL divergence which is given as

Loss = RL+KL (7.14)

RL = ||X̂mot −Xmot||2 (7.15)

KL =
k∑
i=1

σ2
i ‘ + µ2

i − log(σi)− 1 (7.16)

where the latent space is k dimensional and the reconstruction loss is the Eu-

clidean norm, represented as ||.||2 operator, of the difference between generated

motion (X̂mot) and true motion (Xmot).

Multiple VAEs with different depths and bottlenecks were tested to find

the best architecture. The capacity of a network increases with increasing

depths and it can describe a much more complex function. However, due to

the problem of vanishing gradient, deep networks tend to be harder to train.

Thus, there exists an optimal depth that balances complexity and trainability.

Similarly, the narrower the bottleneck layer, the better is the dimensional-

ity reduction. However, reducing the width too much can lead to loss of

excessive information. Networks with depth=(1,2,3,4) and bottleneck layer

width=(15,30,60) were tested and the results are given in Table 7.1. Each

VAE is trained for 1000 epochs with a batch size of 256 using Adam (adaptive
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moment estimation) optimizer.

Table 7.1: VAE model architectures that were tested and their performances

Name Encoder Arch. Latent (z) dim. Decoder Arch. Training loss Validation loss
VAE-FC-H1-Z15 (100) 15 (100) 32.2734 32.4453
VAE-FC-H1-Z30 (100) 30 (100) 32.2415 32.2879
VAE-FC-H1-Z60 (100) 60 (100) 32.0597 32.3151
VAE-FC-H2-Z15 (150,75) 15 (75,150) 28.1138 28.8488
VAE-FC-H2-Z30 (150,75) 30 (75,150) 28.6563 29.2358
VAE-FC-H2-Z60 (150,75) 60 (75,150) 28.1563 28.8108
VAE-FC-H3-Z15 (200,100,60) 15 (60,100,200) 25.2833 25.8237
VAE-FC-H3-Z30 (200,100,60) 30 (60,100,200) 25.5534 26.0324
VAE-FC-H3-Z60 (200,100,60) 60 (60,100,200) 26.2158 26.6811
VAE-FC-H4-Z15 (200,150,100,60) 15 (60,100,150,200) 25.5023 25.8424
VAE-FC-H4-Z30 (200,150,100,60) 30 (60,100,150,200) 26.3350 26.6101
VAE-FC-H4-Z60 (200,150,100,60) 60 (60,100,150,200) 28.2903 28.3822

We notice that VAE-FC-H3-Z15 performs the best. It contains three

hidden fully-connected layers consisting of 200, 100 and 60 nodes each, ReLU

activation function after each layer and the bottleneck layer z contains 15

nodes. The training curves of VAE-FC-H3-Z15 can be seen in Fig. 7.13.

Figure 7.13: Training losses for the fully connected VAE

Some sample outputs generated using VAE-FC-H3-Z15 are shown in

Fig. 7.14 where an input constraints (top-left) generates three motion tra-

jectories sampled from the underlying distribution. Notice how the VAE can
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generate variations in both path and orientation data using its understanding

of family of 5-SS mechanism motions.

(a) Input Masked Motion (b) Generated Motion 1

(c) Generated Motion 2 (d) Generated Motion 3

Figure 7.14: Motion Trajectories generated using VAE for a Alt-Burmester
input constraint
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7.4.2 Using Classical Motion Generation

Once the model is trained, it is capable of augmenting any Alt-Burmester

problem into a motion synthesis problem. Existing kinematic mapping based

algebraic fitting algorithms can now be used to generate 5-SS mechanisms [82,

64]. However, for a general spatial mechanism, a motion synthesis approach

might not exist in literature. In that case, we use a hierarchical database based

approach to find solution mechanisms efficiently.

7.4.3 Creating a Hierarchical Database

One of the most powerful features of the VAE is its ability to provide

a compact representation of each coupler motion using its latent vector. We

use this compact signature for fast and efficient database search and clustering

algorithms. Thus, once the training is completed, the encoder module is used

to generate latent vector signatures of each masked motion in the database

denoted by the µ vector. Then, these signatures are clustered into 500 groups

using the K-Means Clustering algorithm. The distance metric used is the

Euclidean distance. As a result, we get 500 cluster centers subdividing the

original dataset of 400k+ coupler constraint curves.

7.4.4 Mechanism synthesis for User Inputted Trajectory

When the user inputs a curve consisting of path-points and poses, it’s

run through the encoder network of VAE to find the µ and σ vectors. Multiple

z vectors are then sampled from the latent distribution which denotes a family

of feasible curve signatures. These curve signatures are then compared to each

of the cluster centers using the P2 norm error metric. Once a center is selected,

the best available mechanism within the cluster can be returned to the user

as a feasible solution. Thus, the user can find multiple defect-free solution
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mechanisms.

7.5 Examples of Mechanism Synthesis for Alt-Burmester Prob-

lem

In this section, we provide two examples of our algorithm in action. In

the examples, we input a spatial trajectory. The trajectory is then processed

by the encoder of our VAE resulting in a 30-dimensional Gaussian distribution

specified by µ and σ. We sample five latent vectors z from this distribution

and look up the closest cluster centers in our database. In the cluster, we find

the best approximation of the coupler motion available and provide it as a

solution.

The input trajectory is shown in the first plot in Fig. 7.15 and Fig. 7.16.

The other plots show a prospective 5-SS solution that closely matches the

target constraints. More mechanisms can be generated by sampling additional

latent vectors from the VAE.

7.6 Conclusion

Thus, in this chapter, we have discussed a complete pipeline including

mechanism simulation, data preprocessing, and machine learning model cre-

ation for the defect-free synthesis of spatial 5-SS mechanism. To generate

coupler motion data, we use a geometric constraint based numerical approach

which uses the Newton-Raphson method. Then, the data is pre-processed

and masked for the purpose of robust learning. Finally, semi-supervised ma-

chine learning techniques of VAE and K-mean clustering are used to efficiently

find solution mechanisms. The algorithm is general enough to solve the Alt-

Burmester problem for any spatial mechanism and generate multiple solutions.
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(a) Input Alt-Burmester Problem (b) Synthesized Mechanism 1

(c) Synthesized Mechanism 2 (d) Synthesized Mechanism 3

(e) Synthesized Mechanism 4 (f) Synthesized Mechanism 5

Figure 7.15: Example 1
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(a) Input Alt-Burmester Problem (b) Synthesized Mechanism 1

(c) Synthesized Mechanism 2 (d) Synthesized Mechanism 3

(e) Synthesized Mechanism 4 (f) Synthesized Mechanism 5

Figure 7.16: Example 2
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Chapter 8

Conclusion

This dissertation claims the following original contributions

• A Fourier based mixed synthesis approach which unifies path and motion

synthesis for planar mechanisms.

• An non-uniform parameterization scheme to optimize Fourier parameters

for planar path synthesis.

• A point-line-plane representation for unified real-time simulation of planar,

spherical, and spatial mechanisms.

• A kinematic synthesis based approach for the unified motion synthesis of

planar, spherical, and spatial mechanisms.

• A machine learning based approach to synthesize spatial mechanisms for

the Alt-Burmester problem and Path Synthesis problem.

Future work could include an extension of the mixed synthesis frame-

work to include function generation. This would unify the three conven-

tional methodologies into a unified framework. Path and motion synthesis

for more complex mechanisms like the six-bar or the eight-bar can also be

explored. Also, the use of machine learning to make mechanism synthesis less

computationally-intensive and more real-time is worth investigating.
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